

IN APPLIED SCIENCE & ENGINEERING TECHNOLOGY

Volume: 6 Issue: I Month of publication: January 2018 DOI: http://doi.org/10.22214/ijraset.2018.1262

www.ijraset.com

Call: 🛇 08813907089 🕴 E-mail ID: ijraset@gmail.com

Fuzzy Ideals and Anti Fuzzy Ideals of Near-Ring

T. L. Dewangan¹, Prof. M. M. Singh²

¹Department of Mathematics, Govt. Polytechnic Ramanujganj, Chhattisgarh, India ²Department of Mathematics, Shri Shankaracharya Technical Campus, Bhilai, India

Abstract: The aim of this paper is to extend the notion of a fuzzy subnear-ring, fuzzy ideals of a near ring, anti fuzzy ideals of nearring and to give some properties of fuzzy ideals and anti fuzzy ideals of a near-ring. Keywords: Near-ring, Near-subring, Ideals of near-ring, Fuzzy set, Fuzzy subring, Fuzzy ideals of near-ring, Anti fuzzy ideals

I. INTRODUCTION

The theory of fuzzy set was introduced by Zadeh[3], applying which Rosenfeld[6] in 1971 defined fuzzy subgroups. Salah Abou-Zaid[4]introduced the theory of a fuzzy subnear-ring and fuzzy ideals of a near-ring. Fuzzy ideals of a ring and a characterization of a regular ring studied by Lui[7]. The notion of fuzzy ideals of near rings with interval valued membership functions introduced by B. Davvaz[10] in 2001. In 2001, Kyung Ho Kim and Young BaeJun[11] in their paper entitled "Normal fuzzy R-subgroups in nearrings" introduced the concept of a normal fuzzy R-subgroup in near-rings and explored some related properties. In 2005, Syam Prasad Kuncham and Satyanarayana Bhavanari in their paper entitled "Fuzzy Prime ideal of a Gamma-near-ring" introduced fuzzy prime ideal in Γ -near-rings. The anti-fuzzy ideals of near-ring defined by F. A. Azam, A. A. Mamun and F. Nasrin. In this paper we study the concept of fuzzy ideals of a near-ring and some difference properties of fuzzy ideals and anti-fuzzy ideals of a near-ring.

II. PRELIMINARIES

For the sake of continuity we recall some basic definitions.

A. Definition 2.1

A set N together with two binary operations + (called *addition*) and \cdot (called *multiplication*) is called a (right) *near-ring* if:

- *1) N* is a group (not necessarily abelian) under addition;
- 2) multiplication is associative (so N is a semi group under multiplication); and
- 3) multiplication distributes over addition on the *right*: for any $x, y, z \in N$ it holds that (x + y).z = (x.z) + (y.z). This near-ring will be termed as right near-ring. If z.(x + y) = z.x + z.y instead of condition (3), the set N satisfies, then we call N a left near-ring. Near-rings are generalised of a rings, addition needs not be commutative and (more important) only one distributive law is postulated.

B. Examples 2.2

(1) *Z* be the Set of positive and negative integers with 0. (*Z*, +) is a group. Define '.' on *Z* by *a*. *b* = *a* for all *a*, *b* \in *Z*. Clearly (*Z*, +, .) is a near ring. (2) Let *Z*₁₂ = {0,1,2,3,...,11}. (*Z*₁₂,+) is a group under '+' modulo 12. Define '.' on *Z*₁₂ by *a*. *b* = *a* for all *a*, *b* \in *Z*. Clearly (*Z*₁₂, +, .) is a near ring. (3) Let M_{2×2} = {(a_{ij})/ *Z* : *Z* is treated as a near ring}. M_{2×2} under the operation of '+' and matrix multiplication '.' is defined by the following:

$$\begin{bmatrix} a & b \\ c & d \end{bmatrix} \cdot \begin{bmatrix} e & f \\ g & h \end{bmatrix} = \begin{bmatrix} a+b & a+b \\ c+d & c+d \end{bmatrix}$$

Because we use the multiplication in Z i.e. $a \cdot b = a$. So

 $\begin{bmatrix} a & b \\ c & d \end{bmatrix} \cdot \begin{bmatrix} e & f \\ g & h \end{bmatrix} = \begin{bmatrix} ae + bg & af + bh \\ ce + dg & cf + dh \end{bmatrix} = \begin{bmatrix} a + b & a + b \\ c + d & c + d \end{bmatrix}.$

It is easily verified $M_{2\times 2}$ is a near ring. We denote xy instead of y. Note that $x \cdot 0 = 0$ and x(-y) = -xy but in general $0x \neq 0$ for some $x \in R$. An ideal *I* of a near-ring *R* is a subset of *R* such that

(1) (I, +) is a normal subgroup of (R, +), (2) $RI \subseteq I$ (3) $(r + i)s - rs \in I$ for any $i \in I$ and any $r, s \in R$.

International Journal for Research in Applied Science & Engineering Technology (IJRASET)

ISSN: 2321-9653; IC Value: 45.98; SJ Impact Factor :6.887 Volume 6 Issue I, January 2018- Available at www.ijraset.com

III. FUZZY IDEALS OF NEAR-RINGS

A. Definition 3.1

Let *R* be a near-ring and μ be a fuzzy subset of *R*. We say a fuzzy subnear-ring of *R* if (1) $\mu(x - y) \ge \min\{\mu(x), \mu(y)\}$, (2) $\mu(xy) \ge \min\{\mu(x), \mu(y)\}$, for all $x, y \in R$.

B. Definition3.2

Let *R* be a near-ring and μ be a fuzzy subset of *R*. μ is called a fuzzy left ideal of R if μ is a fuzzy subnear-ring of R and satisfies: for all $x, y \in R$.

- 1) $\mu(x y) \ge \min\{\mu(x), \mu(y)\},\$
- 2) $\mu(y+x-y) \ge \mu(x),$
- 3) $\mu(xy) \ge \mu(y)$ or $\mu(xy) \ge \mu(x)$

C. Definition3.3

Let *R* be a near-ring and μ be a fuzzy subset of *R*. μ is called a fuzzy right ideal of R if μ is a fuzzy subnear-ring of R and satisfies: for all $x, y \in R.(1)$ $\mu(x - y) \ge \min\{\mu(x), \mu(y)\}$, (2) $\mu(xy) \ge \min\{\mu(x), \mu(y)\}$, (3) $\mu(y + x - y) \ge \mu(x)$, (4) $\mu((x + i)y - xy) \ge \mu(i)$.

D. Example 3.4

Let $R := \{a, b, c, d\}$ be a set with two binary operations as follows:

+	а	b	с	d
а	а	b	с	d
b	b	а	d	с
с	с	d	b	а
d	d	с	а	b

	а	b	с	d
а	а	а	а	а
b	а	а	а	а
с	а	а	а	а
d	а	а	b	b

The we can easily see that $(R_1 +)$ is a group and $(R_1 +)$ is an semigroup and satisfies left distributive law. Hance $(R_1 +, .)$ is a left near-ring. Define a fuzzy subset $\mu : R \to [0,1]$ by $\mu(c) = \mu(d) < \mu(b) < \mu(a)$. Then μ is a left fuzzy ideal of R.

E. Example 3.5

Let $R := \{a, b, c, d\}$ be a set with two binary operations as follows.

					1					
+	а	b	с	d			а	b	с	d
а	а	b	с	d		а	а	а	а	а
b	b	а	d	с		b	а	а	а	а
с	с	d	b	a		С	а	а	а	а
d	d	с	a	b		d	а	b	с	b

Then we can easily see that $(R_1 + 1)$ is a left near-ring. Define a fuzzy subset $\mu : R \to [0,1]$ by $\mu(c) = \mu(d) < \mu(b) < \mu(a)$. Then μ is a fuzzy left ideal of R, but not fuzzy right ideal of R, Since $\mu((c + d)d - cd) = \mu(d) < \mu(b)$.

F. Proposition 3.6

If a fuzzy subset μ of *R* satisfies the properties $\mu(x - y) \ge \min\{\mu(x), \mu(y)\}$ then

Volume 6 Issue I, January 2018- Available at www.ijraset.com

1) $\mu(0_R) \ge \mu(x)$ 2) $\mu(-x) = \mu(x)$, for all $x, y \in R$

Proof.(1) We have that for any $x \in R$

$$\mu(0_R) = \mu(x - x)$$

$$\geq \min\{\mu(x), \mu(x)\}$$

$$= \mu(x)$$

Hence $\mu(0_R) \ge \mu(x)$.

(2) By (1), we have that

$$\mu(-x) = \mu(0_R - x)$$

$$\geq \min\{\mu(0_R), \mu(x)\}$$

$$= \mu(x)$$

Hence
$$\mu(-x) = \mu(x)$$

G. Proposition 3.7

Let μ be a fuzzy ideal of R. If $\mu(x - y) = \mu(0_R)$ then $\mu(x) = \mu(y)$.

Proof. Assume that $\mu(x - y) = \mu(0_R)$ for all $x, y \in R$. Then

 $\mu(y) = \mu(y - x + x)$

 $= \mu(x)$

From equation (1) and (2), Hence $\mu(x) = \mu(y)$.

$$\mu(x) = \mu(x - y + y)$$

$$\geq \min\{\mu(x - y), \mu(y)\}$$

$$= \min\{\mu(0_R), \mu(x)\}$$

$$= \mu(y)$$

 $\geq \min\{\mu(y-x), \mu(x)\}$

 $= \min\{\mu(0_R), \mu(x)\}$

So, $\mu(x) \ge \mu(y)$

So, $\mu(y) \ge \mu(x)$

Also,

(2)

H. Proposition 3.8

If $\mu: R \to [0, 1]$ is a fuzzy ideals of near-ring R with multiplicative identity 1_R . Then $\mu(0_R) \ge \mu(x) \ge \mu(1_R) \forall x \in R$.

Proof: We know that, $\mu(x) = \mu(-x)$

And now,

$$\mu(0_R) = \mu(x-x)$$

$$= \mu(x + (-x))$$

$$\geq \min\{\mu(x), \mu(-x)\}$$

$$= \mu(x)$$
(1)
Also
$$\mu(x) = \mu(x, 1_R)$$

$$\geq \min\{\mu(x), \mu(1_R)\}$$

$$\geq \mu(1_R)$$
(2)

From equation (1) and (2),

$$\mu(0_R) \ge \mu(x) \ge \mu(1_R) \ \forall \ x \in R.$$

A. Definition 4.1

IV. ANTI-FUZZY IDEALS OF NEAR-RING

Let *R* be a near-ring and μ be a fuzzy subset of *R*. μ is called an anti-fuzzy left ideal of R if μ is a fuzzy subnear-ring of R and satisfies: for all $x, y \in R$.

1) $\mu(x - y) \le \max\{\mu(x), \mu(y)\}$,

$$2)\,\mu(y+x-y)\leq\mu(x),$$

3)
$$\mu(xy) \le \mu(y)$$
 or $\mu(xy) \le \mu(x)$

B. Definition4.2

Let *R* be a near-ring and μ be a fuzzy subset of *R*. μ is called a anti fuzzy right ideal of R if μ is a fuzzy subnear-ring of R and satisfies: for all $x, y \in R$,

1)
$$\mu(x - y) \le \max\{\mu(x), \mu(y)\},\$$

2)
$$\mu(xy) \le \max\{\mu(x), \mu(y)\}\$$

3)
$$\mu(y + x - y) \le \mu(x)$$

4) $\mu((x+i)y - xy) \leq \mu(i).$

C. Proposition 4.3 For every anti fuzzy ideals μ of R,

1)
$$\mu(0_R) \leq \mu(x), \forall x \in R.$$

2)
$$\mu(x) = \mu(-x), \forall x \in \mathbb{R}.$$

3)
$$\mu(x-y) = \mu(0_R) \Rightarrow \mu(x) = \mu(y), \forall x, y \in R.$$

Proof.(1)

$$\mu(0_R) = \mu(x - x)$$

$$\leq \max\{\mu(x), \mu(x)\}$$

$$= \mu(x) .$$

(2)

 $\leq \max\{\mu(0_R), \mu(x)\}$

 $\mu(-x) = \mu(0_R - x)$

International Journal for Research in Applied Science & Engineering Technology (IJRASET)

ISSN: 2321-9653; IC Value: 45.98; SJ Impact Factor :6.887 Volume 6 Issue I, January 2018- Available at www.ijraset.com

$$= \mu(x).$$

For all $x \in R$. Since x is arbitrary, we conclude that $\mu(-x) = \mu(x)$.

(3) Assume that $\mu(x - y) = \mu(0_R)$ for all $x, y \in R$. Then

$$\mu(x) = \mu(x - y + y)$$

$$\leq max\{\mu(x - y), \mu(y)\}$$

$$= max\{\mu(0_R), \mu(x)\}$$

$$= \mu(y)$$

So, $\mu(x) \le \mu(y)$

Also,

$$\mu(y) = \mu(y - x + x)$$

$$\leq max\{\mu(y - x), \mu(x)\}$$

$$= max\{\mu(0_R), \mu(x)\}$$

$$= \mu(x)$$

So, $\mu(y) \le \mu(x)$

From equation (1) and (2)

Hence $\mu(x) = \mu(y)$.

REFERENCES

- [1] M. Akram, Anti fuzzy Lie ideals of Lie algebras, Quasigroups Related Systems 14 (2006)123-132
- [2] Y. Bingxue, Fuzzy semi-ideal and generalized fuzzy quotient ring, Iran. J. Fuzzy Syst. 5 (2008) 87-92.

[3] L. A. Zadeh, Fuzzy sets, Information and Control 8 (1965) 338-353

- [4] S. A. Zaid, On fuzzy ideals and fuzzy quotient rings of a ring, Fuzzy Sets and Systems 59(1993) 205-210
- [5] M. Zhou, D. Xiang and J. Zhan, Onanti fuzzy ideals of ¿-rings, Ann. Fuzzy Math. Inform.
- [6] A. Rosenfeld, Fuzzy groups, J. Math. Anal. Appl. 35 (1971) 512-517.
- [7] W. Liu, Fuzzy invariant subgroups and fuzzy ideals, Fuzzy Sets and Systems 8 (1982) 133-139.
- [8] T. K. Dutta and B. K. Biswas, Fuzzy ideals of near-rings, Bull. Calcutta Math. Soc., 89(1997), 447-456.
- [9] S.M. Hong, Y.B. Jun, H.S. Kim, Fuzzy ideals in near-rings, Bulletin of KoreanMathematical Society, 35(3), (1998), 455–464
- [10] B.Davvaz, Fuzzy ideals of near-rings with interval valued membership functions, Journal of Sciences, Islamic republic of Iran, 12(2001), no. 2, 171–175.
- [11] K. H. Kim and Y.B. Jun, Anti fuzzy ideals in near rings, Iranian Journal of Fuzzy Systems, Vol. 2 (2005), 71-80.

(2)

(1)

45.98

IMPACT FACTOR: 7.129

INTERNATIONAL JOURNAL FOR RESEARCH

IN APPLIED SCIENCE & ENGINEERING TECHNOLOGY

Call : 08813907089 🕓 (24*7 Support on Whatsapp)