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Abstract: In this Paper, an M/M/c/N/K loss and delay interdependent queueing model with controllable arrival rates and reverse
balking is considered. For this model, the steady state probabilities are derived and the average waiting times for the two types of
customers (elective and emergency) are obtained for varying arrival rates when the arrival and service processes are
interdependent. Sensitivity analysis are given for a better understanding.

Keywords: Finite Capacity, Interdependent Controllable Arrival and Service rates, Loss and delay, Reverse balking, Single
Server, Bivariate Poisson process.

I. INTRODUCTION

In the loss and decay queueing system, the customers are classified into two classes. They are (i) Elective customers and (ii)
Emergency customers. The elective customers have patience to form a queue and wait. While the emergency customers find the
server busy on their arrival, leave the system and are lost. The arrival and service processes are taken to be independent in most of
these Jain (1998) models. Balking behavior of the customers is also considered due to which the customers may not like to join the
queue on seeing it very long. The notion of customer balking appears in queuing theory in the works of Haight [1]. He has analysed
M/M/1 queue with balking in which queue length is infinite. Jain and Rakesh Kumar [2] have studied M/M/1/N queueing system
with reverse balking (a queueing system that indicates the probability of balking will be low when the queue size is more).

Along with several other assumptions, it is customary to consider that the arrival and service processes are independent. However in
many particular situations, it is necessary to consider that the arrival and services processes are inter dependent. A queueing model
in which arrivals and services are correlated is known as interdependent queuing Model. Much work has been reported in the
literature regarding interdependent standard queuing model with controllable arrival rates. In Jain (1998) [3] analysed the finite
population loss and delay queueing system with no passing concept.K. Srinivasa Rao, Shobha and P. Srinivasa Rao [4] have
discussed M/M/1/ « interdependent queuing model with controllable arrival rates. A.Srinivasan and M. Thiagarajan [5,6], have
analysed M/M/1/K interdependent queuing model with controllable arrival rates, M/M/C/K/N interdependent queuing Model with
controllable arrival rates balking, reneging and spares. Srinivasan and Thiagarajan (2007) have analyzed M/M/c/ /K loss and delay
interdependent queueing model with controllable arrival rates and no passing.

In this paper, a finite population, loss and delay, interdependent queueing model with controllable arrival rates and reverse balking
has been considered with the assumption that the arrival and service processes of the system are correlated and follows a bivariate

Poisson process. Here the arrival rate is considered as, AO -a faster rate of arrival and [1, —a slower rate of arrival. Whenever the

queue size reaches a certain prescribed number R, the arrival rate reduces from 1, to [1; and it continues with that rate as long as the
content in the queue is greater than some other prescribed integer r (r > 0 & r < R).When the content reaches r, the arrival rate
changes back to [, and the same process is repeated. In section 2, the description of the model is given stating the relevant
postulates. In section 3, the steady state equations are obtained. In section 4, the characteristics of the model are derived In section5,
the analytical results are numerically illustrated .

Il. DESCRIPTION OF THE MODEL
Consider a c-server finite capacity loss and delay queueing system with the following assumptions:
(i) The arrival process {X(t)} and the service process {X,(t)} of the system are correlated and follow a bivariate Poisson process
given by

©IJRASET (UGC Approved Journal): All Rights are Reserved




International Journal for Research in Applied Science & Engineering Technology (IJRASET)
ISSN: 2321-9653; IC Value: 45.98; SJ Impact Factor: 6.887
Volume 6 Issue 111, March 2018- Available at www.ijraset.com

g )t min (x.%) (et m }“ij_Et rx-m n-Et (xo—m)
PEX, (8) = X, X, (8) = x, } = o7 > (€)"[( u )_pn]])!(x[(itm)!)]

..(2.2)
where X ,X, =01, 2,5 Ao Aoy Ay >0 5, >0
0 <e<min(4;;, u,)
n=012,.,c-1c,c+1..,.r-1r,r+1...R-1,R,R+1...K-1K

with parameters Ay, Aoy, A1y, Uy, P° and € as mean arrival rate of elective customers when the system is in faster rate of

arrival, mean arrival rate of emergency customers when the system is in faster rate of arrival, mean arrival rate of elective
customers when the system is in slower rate of arrival, mean service rate of customers of type B, probability of reverse balking
and the co-variance between the arrival and service process respectively.

The mean arrival rate and the mean service rate when the system size is n is defined as
(K=n)Z,;;if0<n<c, j=12
(K=n)4,;ifc<n<R-1
(K=n)A;ifr+1<n<K

_|nu;0<n<c
i cuc<n<k

~
Il

A. The postulates of the model are

1) The probability that there is no arrival with loss and delay, reverse balking and no service completion during a small interval
of time h, when the system is in faster rate of arrivals is 1 — [(/10 —-2e)Kp'+(u,— e)]h +o(h)

2)  The probability that there is one arrival with loss and delay, reverse balking and no service completion during a small interval
of time h, when the system is in faster rate of arrivals is (4, —2 €)Kp'h +0(h)

3)  The Probability that there is no arrival with loss and delay, reverse balking and no service completion during a small interval

n

of time h at state n, when the system is in faster rate of arrival is 1— ij(im— e)(K —n)+c(u, - e)}h +0(h)

4)  The Probability that there is no arrival with loss and delay, reverse balking and no service completion during a small interval

n

of time h at state n, when the system is in slower rate of arrival is 1— ij(ﬂu— e)(K —n) +c(u,— e)}h +o(h)

5)  The probability that there is no arrival with loss and delay, reverse balking and one service completion during a small interval
of time h state n, when the system is either in faster or slower rate of arrivals isC(u, — €)h + o(h)

6) The Probability that there is one arrival with reverse balking and one service completion during a small interval of time h,
when the system is either in faster or slower rate of arrivals is € h + o(h)

I1l. STEADY STATE EQUATIONS
We observe that only P.(0) exists when n =0,1,2,...,c-1,¢,c+1,..., r-1,r; both P (0)and P, (1) exist when n = r+1, r+2,
..R-2,R-1; only P,(1) exists when n=R, R+1,...,K. Further P, (0) =P, (1) = 0when n> K.

The steady state equations are given by
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0=—-K (% —2€)p'P,(0) + (u— €)P,(0) (31

{(K 1)( ! j(z —2&)+(u- e)}P(O)u(u €)P,(0) + K(4, —2 €) p'P,(0)

..(3.2)

- {(K - n)( N”_ljuo ~2e)+n(u- e)}Pn(on (n+1)(u-€) P, (0)

+(K-n+1)(|:_11j (A, — 2 €)P._,(0) @2<n<c-1)
..(33)

ool

+(K_C+1)(ISI_

- ool

+(K—n+1)[:l__

ool

o(u— )P )+ (K -1 +1)(

ool

+(K—n+1)(:I

j(/%r €)+c(u- 6)}3 (0)+c(u—¢<)P.,(0)
..(3.4)

1
1) (A -2 )P, (0)

j(/l 1~ €)+c(u- 6)}’ (0) +c(u—€) P,.4(0)

1) (Ay—€)P,,(0) (c+1<n<r-1)

...(3.5)

j(/lm— €)+c(u- 6)}'3 (0) + c(u—-€)P.,(0)

-1
N -1

j (Ao, —€)P,_1(0)

..(3.6)

j(/lm_ €)+c(u- e)}P (0) + c(u—€) P,.1(0)

‘11) (A — €)P._,(0) (r+1<n<R-2)

..(3.7)

|:(K _R+1)( ~ j(/101—€)+c(‘u—e)} r-1(0)

+ (K - R+2)( j(/lm €) Pr,(0)

...(3.8)

{(K - _1)( j(ﬂll E) + C(:u_ E):| r+1 (1) + C(:u E) r+2 (1)
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...(3.9)

j(ﬂn—e)ﬂl(ﬂ e)}P(l)H?(ﬂ €) Pra(@

o focofe

+(K—n+1)(:|_

11) (A,—€)P_, (1) (F+2<n<R-1)
...(3.10)

{(K R)( R j(ﬂu &)+ c(u- eﬂp @) +c(u— ) Pry @)
+ (K- R"‘l)( j(/lm €)P:,(0)

S(K - R+1>( j(ﬂﬂ P

- fooe

+(K —n+1) [N j(zn )P, (1) (R+1<n<N-1)

..(3.11)

j(/lu €)+c(u- G)} P, () +c(u-€)P,, (1)

...(3.12)
0=—[c(u-€)]P, @)+ (K =N +1)(1,- €)P,_, 1) ... (3.13)
From (3.1) to (3.8) we get

1 1" (4, -2€)" )
(N 1) { n(i_e)’ }(K) P'Py(0),,n=12,.¢
:(Nl_l): |:(lo—2(€ﬂ)i(j)oi_€)n0_:Cn1c+1:|(K)n|:1:1_[:|:|p'P0(O)’n:C+1,C+2 ----- r
B r 1 ar (lo_ze)c(lm_e)r—cu_‘ 1 p I ) )
Pn(O)_ _(N—l)_|: (Iu_e)wl __Cr°+2:|(K)”1|:1|_[cl:|pP0(o) Pr+1(1):n—r+1
1 "G -2e)(Ag-e)" [ 1 }K {nll} o
_(N _1)_ |: (,u—e)n __Cn—c+”1 ( )n ll_:[c p 0( )

2101_ e n-r-1
] Mmmﬂ)] (P (€= o

2101_ c n-r-2 ] i i
" ((N_l)c(ﬂ_e)] (n 1) pnfrfz(K r 2)n—rfz + ..

Pr+1(1)ln:r+2:r+3 ----- R -1

2101 c n-R+1 ]
(mnw] 0D P (KR D e
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.. (3.19)
From (3.9) to (3.13) we get

Pn (1) = {(LJ N (n _1)Pn—r—1(K 1)n r-1 [LJ ) (n _1) I:)n—r—Z

c(u—e)(N -1) c(u—e)(N -1)
—r— _ Ahme ; - _
(K r 2)n—r—2 +.. [C(u E)(N 1) (n 1)Pn—R(K R)n—R :lPH-l(l) (3-15)
n=r+1,r+2,..,.R+2,R+3,...,.N
1 R4X%—2erum—a“°{ 1~}K {“ﬂ}.PO

where P_(1)= {(N _1):| L (u— e)R } cRerl (K)g 1;[ pRj_(z)

{(R—l)!( Ag— € J (K=r—1) + (R_l)!( A= € J (K-r-2)

r [(N=1)c(u-e) R (r+2) (N =2)c(u—e) Ror-2
Foet (R_l)!( Aoy~ € J(K—R+1)n_R+1+1}
(R=2)N (N -I)c(u—¢e)

The probability P, (0)that the system is empty can be calculated from the normalizing condition P(0) + P(1) =1

mm+Pm=Pﬁm+i{ 1 } {@—EEL} ), p'Py (0)

(N -1) n(u—e)"
R-1 1 n-1 (AO_ZE)C(AOI_E)WC [ 1 }K |:n1|:| P (0
' ELH(ququ 7D (2o
+ A~ € jnrz(n—l)p (K=-r-2)
(N -Dc(u-e) e e
( 101 (S JnRﬂ(n_l)p (K_R+l)
(N =1)c(u- ) o o

N 1 — e n-r-1
+ z {( _ j (n _1) pn—r—l(K -r _1) n-r-1
n=r+1

(N -1)c(u-e)

111—6 n-r-2 ) o
((N_l)c(u—e)j (n=-p,,,(K=-r-2),.,_,

A € "R
1 -1 r(K=R), s |IP. )P, (0
&N—Ddu—dj (N=1)p, (K - R) }} 1)P, (0)

..(3.16)
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IV. CHARACTERSTICS OF THE MODEL
The probability P(0O) that the system is in faster rate of arrival is
N

P(0)=> R.(0)

n=0

Since Pn (0) exists only when n=0,1,2,.....r-1,r, r+1, r+2,...,.R-2, R-1, we get

PO)=FR,0)+Y PO+ 3 P,(0) ey

The Probability that the system is in slower rate of arrival is

PO=Y RO=Y RO+ Y RO+Y RO

n=r+1

..(4.2)

Since Pn (1) exists only when n=r+1, r+2, ...,R-2, R-1,...,N we get

N
P = Y, P.Q)
n=r+1 ...(4.3)
The expected number of customers in the system is give by

Ls = Lso + le ...(4.9)
where
c r R-1
Ls0 = Z nl:)n (0) + Z nl:)n (0)+ Z nl:)n (0) ...(4.5)
n=0 n=c+1 n=r+1
and
R-1 N
Ly =D, NP0+ P, (1) 46)
n=r+1 n=R
Therefore
c r R-1 N
Ls = Z nl:)n (0)+ Z nl:)n (0)+ Z nPn(0)+ Z nl:)n (1) ..(4.7)
n=0 n=c+1 n=r+1 n=r+1

From (3.14) and (3.16),we get
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211_ c n-r-2 ) N
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Using Little’s formula, the expected waiting time of the customers in the system is given by

..(4.8)

W, == Where 4 = A,P(0) + 4,P(1) ..(4.9)

This model includes the particular cases as, when p’ =1 this model reduces to M/M/c/N loss and delay interdependent queueing
model with controllable arrival rates discussed by Srinivasan and Thiagarajan (2007).

V. SENSITIVITY ANALYSIS
For r=2, R=5, N=6, K=8
Case 1. Probability P(0) that the system is in faster rate of arrivals and Probability P(1) that the system is in slower rate of arrivals

by varying A, keeping other parameters fixed
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Case 2. Average number of customers in the system (Ls) and expected waiting time of the customers in the system (Ws) by varying
s keeping other parameters fixed
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