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Abstract— The classical Cayley-Hamilton theorem says that every square matrix satisfies its own characteristic equation.  
The Cayley-Hamilton theorem has been extended to rectangular matrices, block matrices, pairs of commuting matrices, 
standard and singular two-dimensional linear (2-D) systems. The Cayley-Hamilton theorem and its generalizations have 
been used in control systems, electrical circuits, systems with delays, singular systems, 2-D linear systems etc., In this paper 
the new approach of Cayley-Hamilton theorem was done using the fuzzy matrices. For this, the Characteristic equation of 
fuzzy matrix, Fuzzy Eigen values and Eigen vectors have been derived. 
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I. INTRODUCTION 
The classical Cayley-Hamilton theorem (Gantmacher 1974, Kaczork 1988, Lancaster 1969) says that every square matrix 
satisfies its own characteristic equation.  The Cayley-Hamilton theorem has been extended to rectangular matrices (Kaczorek 
1995, Kaczorek 1988), block matrices (Kaczorek 1995), pairs of commuting matrices (Chang and Chan 1992, Lewis1982, lewis 
1986, Kaczorek 1995) and standard and singular two-dimensional linear (2-D) systems (Kaczorek 1992, 1993, Kaczorek 1995, 
Smark and Barnett 1989, Theodoru 1989).  The Cayley-Hamilton theorem and its generalizations have been used in control 
systems, electrical circuits, systems with delays, singular systems, 2-D linear systems etc.,  (Kaczorek 1992, 1993, Buslowicz 
1981, Buslowicz 1982, Kaczorek 1994, Lewis 1982, Mertizions and Christodoulous 1986). The Cayley-Hamilton theorem has 
been extended to n-dimenstional (n-D) real polynomial matrices (Kaczorek 2005).  An extension of the Cayley-Hamilton 
theorem for discrete-time linear systems with delay has been given in (Buslowicz and Kaczorek 2004).  In this paper the new 
approach of Cayley-Hamilton theorem has been given using fuzzy matrices. For this, Characteristic equation of fuzzy matrix, 
Fuzzy Eigen values and Eigen vectors have been derived. 

II. PRELIMINARIES 

A. Cayley-Hamilton theorem for Square and Rectangular Matrices 

Let  n mC  be the set of complex  n m  matrices. 

Theorem 1: (Cayley-Hamilton theorem). Let n mA C  and  

     
0

det I 1
n

i
n i n

i

p s s A a s a


    be the characteristic polynomial of A , where In is the  n n identity matrix.  Then 

 
0

0
n

i
i n

i
p A a A



  , where 0n is the  n n matrix.  

The classical Cayley-Hamilton theorem has extended to rectangular matrices as follows (Kaczorek 1988). 

Theorem 2: (Cayley-Hamilton theorem for rectangular matrices). Let  1 2
n mA A A C   , 1

m mA C  ,  
2

m n mA C   , n m  and 
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1 m 1
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m
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A i m
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    be the characteristic polynomial of 1A .  

Then 1
1 2

0

0
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i
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



    ,  where 0mn is the  n m  matrix. 

Theorem 3: Let 1

2
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 and let the characteristic polynomial of 1A have the form 
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B. Cayley-Hamilton Theorem for Block Matrix 
The classical Cayley-Hamilton theorem has also been extended for block matrices (Kaczorek 1998). 

Theorem 4: (Cayley-Hamilton Theorem for block matrices).  

Let

 

11 1

1

m
mn mn

m mm

A A
A C

A A



 
   
  



  



, where n n
ijA C  are commutative, i.e., ij kl kl ijA A A A for all , , , 1, 2,...,i j k l m  

Let  m( ) det IP S S A   1
1 1...m m

m mS D S D S D
     be the matrix characteristic polynomial of A , where n nS C  is the 

matrix (block) eigenvalue of A ,  denotes the Kronecker product of matrices (Kaczorek 1988).  Then  

   m 0
0

( ) I 0
m

m i i n
i

P A D A D I


    .  

The matrix  m( ) det IP S S A   1
1 1...m m

m mS D S D S D
     is obtained by developing the determinant of the matrix 

 nI S A  considering its commuting blocks as scalar entries (Kaczorek 1988). 

Theorem 5: (Cayley-Hamilton theorem for rectangular block matrices).   
 Let

    
1 2

mn mn pA A A C    and let the matrix characteristic polynomial of A have the form 

1 1
0 1det I ...h h h h

n z A z A z A       .  Then   1
m 2 0

0
I 0

m
i i

m i n
i

D A A A D I




     The dual theorem has the form. 

Theorem 6: Let  

2

,mn p mnA
A C

A
  

  
 

2,mn mn p mnA C A C   and let the matrix characteristic polynomial of Ahave the form 

1 1
0 1det I ...h h h h

n z A z A z A       .  Then   

   m 0
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I 0
m

m i i n
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A
D A D I

A 


 
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C. Cayley-Hamilton theorem for Systems with Delays 

1) Discrete time-systems 

Consider the discrete-time linear system with h  delays described by the equation 

1 0 1 1i i i h i h ix A x A x A x Bu       , where n
ix C , m

iu C are the state and input vectors, ,n n
kA C  1,2,k h   and 

n mB C  .  The characteristic polynomial of  1 0 1 1i i i h i h ix A x A x A x Bu       has the form. 

 

0 1 1
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n h h

n n

n n
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I I z
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 

  





    



= 1 1
0 1det h h h

n hI z A z A z A        

= 1
1 1 0 ,N N

Nz a z a z a
     1N n h  .  Let 1 0 1 1i i i h i hA A A           and  

0 nI  and 0i I  for 0i  knowing the matrices kA , 0,1, ,k h  .  Using the above equation, we may compute the matrices 

i for 1, 2,i    . 

Theorem 7:  The matrices i for 1, 2,i    defined by 1 0 1 1i i i h i hA A A          and 0 nI  and 0i I  for 

0i  satisfying the equation 
0

0
N

i k i k
i

a  


  for  0,1, 1Nk a  , where ia , 0,1,..., 1i N  are the coefficients of the 

characteristic polynomial  1 1
0 1det h h h

n hI z A z A z A        

Proof:  From definition of the inverse of the inverse matrix we have  
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1 1
0 1

h h h
n h ad

I z A z A z A      
11 1

0 1
h h h

n hI z A z A z A
        

  
1 1

0 1det h h h
n hI z A z A z A      

 
from 1 0 1 1i i i h i hA A A          and 0 nI  and 0i I  for 0i  it follows that 

11 1
0 1

h h h
n hI z A z A z A

       1 1
0 1

h h h
n h ad

I z A z A z A        from the above equation , we obtain 

1 1
0 1

h h h
n h ad

I z A z A z A       1 2 3
1 2nI z z z          1

1 1 0
N N

Nz a z a z a
   

 
Comparing the coefficient of 

the same power of  1kz   in the 1 2 3
1 2nI z z z       we obtain the equation  

0
0

N

i k i k
i

a  


  for  0,1, 1Nk a  . 

Example 1: Let h I and 0

1 0
0 1

A  
  
 

, 1

0 1
1 2

A  
  
 

.  The Characteristic polynomial  

1 1
0 1det h h h

n hI z A z A z A       in this case, has the form   2
2 0 1detp z I Z A z A      

2

2

1
1 2

z z
z z

 


  
4 3 22 2 1z z z z     . 

Using 1 0 1 1i i i h i hA A A          and 0

1 0
0 1

A  
  
 

, 1

0 1
1 2

A  
  
 

we obtain 

1 0

1 0
0 1

A  
    

 
 

2 0 1 1

1 1
1 3

A A  
      

 
 

3 0 2 1 1

1 2
2 5

A A  
       

 
 

4 0 3 1 2

2 5
5 12

A A  
       

 
 

Hence by 
0

0
N

i k i k
i

a  


   for k=0 we obtain 

4 3 2 1 2

2 5 1 2 1 1 1 0 1 0 0 0
2 2 2 2

5 12 2 5 1 3 0 1 0 1 0 0
I            

                       
           

 

Therefore, the matrices 1 2 3 4, , ,     satisfy the equation 4 3 22 2 1z z z z     . 

D. Cayley-Hamilton theorem for Singular Systems 

Consider the singular systems Ex Ax Bu  , where nx R , mu R , n nA R  , n mB R  . 
It is assumed that det E=0,  det 0Es A   for some s C and EA AE .  If the assumption  det 0Es A   holds then it is 

easy to show (Kaczorek 1988) that the matrices 

   1 1,E Es A E A Es A A    
  

Satisfy the conditions EA AE  

Theorem 8:  

Let   1
1 1 0det r r

r rEs A a s a s a s a
     

  r rank E n 
 
Then 

0

0
r

i n i
i

i

a A E 



  

Proof : 
Let   1

1 1 0
n

nAdj Es A B s B s B
    

  
be the adjoint matrix of  Es A . 

From definition of the inverse matrix and   1
1 1 0det r r

r rEs A a s a s a s a
      ,   1

1 1 0
n

nAdj Es A B s B s B
      we 

have    1 1
1 1 0 1 1 0

n r r
n n r rEs A B s B s B I a s a s a s a 
              

The comparison of the coefficients of the same powers of s in the equality  
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   1 1
1 1 0 1 1 0

n r r
n n r rEs A B s B s B I a s a s a s a 
              yields 

1

2

3

2

1 1

0 0

00 0 0 0 0
0 0 0 0

0 0 0 0

0 0 0 0
0 0 0 0
0 0 0 0 0

n

n

n

r n

n

n

BE
BA E
BA E

a I
BA E
B a IA E
B a IA







    
         
    
    

    
    
    

     
              







      







 

Pre multiplying above equation by the row matrix 
1 2 2 1n n n n nA A E A E AE E      

And using equation EA AE  we obtain the equation 
0

0
r

i n i
i

i

a A E 



 . 

III. PROPOSED DEFINITIONS AND THEOREM 
In this section we give the proposed Characteristic Equations of Fuzzy matrix, Polynomial equations of fuzzy matrix, 

working rule to find characteristic equation of fuzzy matrix, Fuzzy Eigen Values and Eigen vectors, Properties of Fuzzy Eigen 
values and Eigen vectors as follows: 

A. Characteristic Equation of Fuzzy Matrix 

Consider the linear transformation  FY A X  

In general, this transformation transforms a column vector 

1

2

.

n

x
x

X

x

 
 
 
 
 
  

 into the another column vector 

1

2

.

n

y
y

Y

y

 
 
 
 
 
  

 

By means of the square fuzzy matrix FA  where 

11 12 1

21 22 2

1 2

. . .

n

n
F

n n nn

a a a
a a a

A

a a a

 
 
 
 
 
  









 

If a vector X is transformed into a scalar multiple of the same vector. i.e., X is transformed into X , then FY X A X   
i.e.,   where I is the unit matrix of order ‘n’. 

FA X IX O   

( )FA I X O                                             .......…(1) 

11 12 1 1

21 22 2 2

1 2

1 0 0 0
0 1 0 0

.. . .

.. . .
0 0 1 0

n

n

n n nn n

a a a x
a a a x

a a a x



       
       
       
        
       
       
              

 

 

     

     

 

 

11 12 1 1

21 22 2 2

1 2

0
0

. . . . . .

. . . . . .
0

n

n

n n nn n

a a a x
a a a x

a a a x






     
          
     
     
     
          




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i.e., 

11 1 12 2 1

21 1 22 2 2

1 1 2 2

( ) 0
( ) 0

. . . . . . . . . .

. . . . . . . . . .
( ) 0

n n

n n

n n nn n

a x a x a x
a x a x a x

a x a x a x






    
    

    







                                              .......…(2) 

This system of equations will have a non-trivial solution, if 0FA I   

i.e., 

11 12 1

21 22 2

1 2

. . . 0

. . .

n

n

n n nn

a a a
a a a

a a a























                                            ............(3) 

The equation 0FA I   or equation (3) is said to be the characteristic equation of the transformation or the characteristic 

equation of the matrix A.  Solving 0FA I  , we get n roots for  , these roots are called the characteristic roots (or) Eigen 

values of the matrix FA .  Corresponding to each value of  , the equation  FA X X  has a non-zero solution vector X.  Let rX , 

be the non-zero vector satisfying FA X X .  When r  , rX  is said to be the latent vector or Eigen vector of a matrix FA  

corresponding to r . 

2) Characteristic polynomial of Fuzzy Matrix 

The determinant FA I  when expanded will give a polynomial, which we call as the characteristic polynomial of fuzzy 

matrix FA . 

3) Working rule to find characteristic equation 

Let FA  be any fuzzy square matrix of order n. The characteristic equation of FA  is 0FA I  . 

 
B. Cayley – Hamilton theorem for fuzzy matrix 

Statement: Every fuzzy square matrix satisfies its own characteristic equation. 

C. Uses of Cayley – Hamilton theorem. 
(i) The positive integral powers of FA  and 

(ii) The inverse of a non-singular fuzzy square matrix FA . 

Example 1: Find the characteristic equation of fuzzy matrix 
0.1 0.2
0 0.2FA  

  
 

 

Solution: Given: 
0.1 0.2
0 0.2FA  

  
   

The characteristic equation of FA  is 0FA I  . 

The characteristic equation of fuzzy matrix FA  is 2
1 2 0S S     

i.e., 1 0.3S  , 2 0.02S   

The characteristic equation of fuzzy matrix FA  is 2 0.3 0.02 0     
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Example 2: Find the characteristic equation of fuzzy matrix 
0.2 0.3 1
0.3 0.1 0.3
0.5 0.2 0.4

FA
 

   
  

 

Solution: Given:

 

0.2 0.3 1
0.3 0.1 0.3
0.5 0.2 0.4

FA
 

   
  

 

The characteristic equation of FA  is 0FA I  . 

The characteristic equation of fuzzy matrix FA  is 3 2
1 2 3 0S S S       

i.e., 1 0.7S  , 2 0.67S   and 3 0.187S   

The characteristic equation of fuzzy matrix FA  is 3 20.7 0.67 0.187 0        

Example 3: Prove that Cayley Hamilton theorem for  
0.1 0.2
0.2 0.1FA

 
  
 

 

Solution: Every fuzzy square matrix satisfies its own characteristic equation. 

Given:

 

0.1 0.2
0.2 0.1FA

 
  
   

The characteristic equation of FA  is 0FA I  . 

The characteristic equation of fuzzy matrix FA  is 2
1 2 0S S     

i.e., 1 0.2S   and 2 0.05S   

The characteristic equation of the fuzzy matrix is 2 0.2 0.05 0     
 
To prove: Cayley Hamilton theorem 2 0.2 0.05 0A A I    

2 0.1 0.2 0.1 0.2 0.03 0.04
0.2 0.1 0.2 0.1 0.04 0.03

A
        

           
 

0.2A = 
0.02 0.04
0.04 0.02

 
 
 

 

2 0.03 0.04 0.02 0.04 0.05 0
0.2 0.05

0.04 0.03 0.04 0.02 0 0.05
A A I

       
              

 

2 0 0
0.2 0.05

0 0
A A I  

    
 

 

Cayley Hamilton theorem is proved. 

Example 4: Prove that Cayley Hamilton theorem for  
0.2 0.1 0.2
0.1 0.2 0.1

0.1 0.1 0.2
FA

 
    
  

 

Solution: Every fuzzy square matrix satisfies its own characteristic equation. 

Given: 
0.2 0.1 0.2
0.1 0.2 0.1

0.1 0.1 0.2
FA

 
    
  

 

The characteristic equation of FA  is 0FA I  . 

The characteristic equation of fuzzy matrix FA  is 3 2
1 2 3 0S S S       

i.e., 1 0.6S  , 2 0.08S  and 3 0.003S   
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The characteristic equation of the fuzzy matrix is 3 20.6 0.08 0.003 0       

To prove: Cayley Hamilton theorem 3 20.6 0.08 0.003 0A A A I     

2

0.2 0.1 0.2 0.2 0.1 0.2 0.07 0.06 0.09
0.1 0.2 0.1 0.1 0.2 0.1 0.05 0.06 0.06

0.1 0.1 0.2 0.1 0.1 0.2 0.05 0.05 0.07
A

       
                 
            

 

3

0.07 0.06 0.09 0.2 0.1 0.2 0.029 0.028 0.038
0.05 0.06 0.06 0.1 0.2 0.1 0.022 0.023 0.028

0.05 0.05 0.07 0.1 0.1 0.2 0.022 0.022 0.029
A

       
                 
            

 

3 2

0.029 0.028 0.038 0.042 0.036 0.054
0.6 0.08 0.003 0.022 0.023 0.028 0.030 0.036 0.036

0.022 0.022 0.029 0.030 0.030 0.042
A A A I

    
              
       

 

    
0.016 0.008 0.016 0.003 0 0
0.008 0.016 0.008 0 0.003 0

0.008 0.008 0.016 0 0 0.003

   
         
      

 

3 2

0.045 0.036 0.054 0.045 0.036 0.054
0.6 0.08 0.003 0.030 0.039 0.036 0.030 0.036 0.036

0.022 0.030 0.045 0.030 0.030 0.042
A A A I

    
              
       

 

3 2

0 0 0
0.6 0 .08 0 .00 3 0 0 0

0 0 0
A A A I

 
      
  

 

Hence Cayley Hamilton theorem is proved. 

IV. CONCLUSIONS 
In this paper a new approach of Cayley-Hamilton theorem for fuzzy matrix was discussed. For that we have given the 
characteristic equation of fuzzy matrix, Eigen values of the fuzzy matrix, and hence Cayley-Hamilton theorem was presented. 
Examples also were given.  The application of the Cayley-Hamilton theorem are electronic circuits, measurement of string 
vibrating, finding out the level of heat conduction flow, algebraic and differential equations, nuclear physics, mechanics, aero 
dynamics and astronomy.   
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