) iJRASET

& International Journal For Research in
Applied Science and Engineering Technology

INTERNATIONAL JOURNAL
FOR RESEARCH

IN APPLIED SCIENCE & ENGINEERING TECHNOLOGQGY

Volume: TPAM-2lESue: onferenddonth of publication: March 2018

DOI:

www.ijraset.com
Call: (£)08813907089 | E-mail ID: ijraset@gmail.com




Emerging Trends in Pure and Applied Mathematics(ETPAM-2018)- March 2018

Contra (gsp)*-Continuous Function in
Topological Spaces

Kalpana.M*,
Assistant Professor, St.Joseph’s College Of Arts And Science College For Women, Hosur.

Abstract: In this paper we have introduced a new function of contra ( gsp)*-continuous in topological spaces which is
properly placed in between the class of closed sets and gsp-closed sets.
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L. INTRODUCTION
Levine [10] introduced the class of g -closed sets in 1970. Maki.et.al [12] defined ag -closed sets in 1994. Arya and Tour [3]

defined gs -closed sets in 1990. Dontchev [8], Gnanambal [9] Palaniappan and Rao[17] introduced gsp-closed set, rg -closed

sets respectively.Veerakumar [18] introduced g* -closed sets in 1991.J.Dontchev [8] introduced gsp-closed sets in 1995..The
purpose of this paper is to introduce the concepts contra (gsp)*-continuous function.

Il.  PRELIMINARIES
A. Definition 2.1: A subset A of topological space (X,7) is called

1) @ pre-open set[14] if A < int(cl(A)) and a pre-closed set if cl(int(A)) = A
9) @ semi-open set [11] if A c cl(int( A)) and a semi-closed set if int(cl(A)) < A
3) a semi-preopen set[1] if A  cl(int(cl(A)) and a semi-preclosed set[1] if

4) ana-open set [15] if A < int(cl(int( A))) and an a-closed set [15] if cl(int(cl(A))) < A

5 @ regular—open set[14] if intcl(A)=A and an regular—closedset[14] if A= intcl(A)

B. Definition 2.2: A subset A of topological space (X,t) is called

1) a generalized closed set (briefly g-closed) [10] if cl(A) < U whenever Ac U

2) generalized semi-closed set(briefly) gs-closed [3] if scl (A) < U whenever Ac U and U is open in (X, ).

3) an a- generalized closed

4) set (briefly ag-closed) [12] if « cl (A) < U whenever A < U and U is open in (X,7)

5) aregular generalized closed set (briefly rg-closed) [17] if spcl (A) < U whenever A < U and U is regular open in
(X,7)

C. Definition 2.3:A function f: (X,7) — (Y,0) is called

1) Contra g-continuous [4] if f~1(v) is a g-closed set of (x,7) for every open set v
of (y,0)

2) Contra ag-continuous[9] if f~1(v) is a ag-closed set of (x,7) forevery open set
v of (y,0)

3) Contra gs-continuous [7] if f~1(v) is a gs-closed set of (x,7) for every open set
v of (y,0)

4) Contra rg-continuous [17] if £~1(v) is a rg-closed set of (x,7) for every open set
v of (y,0)

D. Definition 2.4 : A function f: (X,7) = (Y,0) from a topological space X into a topological space Y is said to be contra —
continuous if f1(V) is closed in X for each open set V of Y.
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E. Definition 2.5: A function f: (X,t) =(Y,0) is called contra(gsp)*-continuous if

f1(V) is (gsp)*-closed in (X,7) for each open set V of (Y,0).

1) Theorem: Let a function f: (X,t) =(Y,0) be a map, where (X,t), (Y,0) are spaces then f is contra(gsp)*-continuous iff the
inverse image of every closed subset of (Y,o) is gsp-open in (X,z

2) Proof

Let F be a closed subset in (Y,o).

Then Y-Fis open in (Y,o)

Since f is contra(gsp)*-continuous, f 1(Y-F) is (gsp)*-closed.

But f-1(Y-F)= X-f }(F)

Thus f 1(F) is gsp open in (X,7)

Conversely,

Let G be an open subset in (Y,0)

Then Y-G is closed in (Y,0)

Since the inverse image of every closed subset in (Y,a) is gsp-open in(X,7)

f-1(Y-G) is gsp open in (X,7)

But f-1(Y-G)= X-f1(G)

Thus f-%(G) is (gsp)*-closed.

Therefore f is contra(gsp)*-continuous.

F. Theorem: Every contra-continuous function is contra(gsp)*-continuous.
1) Proof: Let f:(X,7) =(Y,0) be contra-continuous.
Let V be any open setin Y.
Then the inverse image (V) is closed in X.
Since every closed set is (gsp)*-closed.
(V) is (gsp)*-closed in X.
Therefore f is contra(gsp)*-continuous.

G. Theorem: Every contra(gsp)*-continuous map is contra g-continuous.
But the converse is not true.
1) Proof

Let f: (X,7) —=(Y,0) be contra(gsp)*-continuous.

Let V be any open setin Y.

Then the inverse image (V) is (gsp)*-closed in X.

Since every gsp*-closed set is g-closed. f-1(V) is g-closed in X. herefore f is contra g-continuous.
2) Example

Let X=Y={a, b, c}

={p. X, {a}.{a,b}}

o={¢, Y {b}} Let f: (X,r) =(Y,0) be the identity map. Let us prove that f is contra g-continuous.

But not contra(gsp)*-continuous.

We have proved that the g-closed sets are

@, X, {c}{ac}, {bc}

And the gsp*-closed sets are

@, X, {c}, {b.c}

f1({a,ch)={a,c} is g-closed in (X,7)

Thus the inverse of every closed set of (Y,a) is g-closed in (X,z) but not

(gsp)*-closed in (X,7).

Hence f is contra g-continuous but not contra(gsp)*-continuous.

H. Theorem: Every contra(gsp)*-continuous map is contra ag-continuous.
1) Proof
Let f: (X,7) =(Y,0) be contra(gsp)*-continuous.
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To prove that, f is contra ag -continuous.
V be any open set in Y. Then the inverse image f1(V) is (gsp)*-closed in X. Since every gsp*-closed set is ag -closed.
(V) is ag -closed in X.
Therefore f is contra ag -continuous.
2) Example
Let X=Y={a, b, c}
={p, X, {a}.{a,b}}
c={¢,Y {b}}
Let f: (X,7) =(Y,0) be the identity map
Let us prove that f is contra ag —continuous
But not contra(gsp)*-continuous ~ We have proved that the ag -closed setsare ¢, X, {b}, {c}.{a,c}, {b,c}
@, X{c}, {b,c}
f 1({a,c})={a,c} is ag -closed in (X,r) but not (gsp)*-closed in (X,r).  Hence f is contra ag-continuous but not contra(gsp)*-
continuous.
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