

IN APPLIED SCIENCE & ENGINEERING TECHNOLOGY

Volume: TPAM-2055 onferendelonth of publication: March 2018

www.ijraset.com

Call: 🛇 08813907089 🕴 E-mail ID: ijraset@gmail.com

Contra (gsp)*-Continuous Function in Topological Spaces

Kalpana.M¹,

¹Assistant Professor, St.Joseph's College Of Arts And Science College For Women, Hosur.

Abstract: In this paper we have introduced a new function of contra $(gsp)^*$ -continuous in topological spaces which is properly placed in between the class of closed sets and gsp-closed sets. Key Words: contra g-continuous, contra gs-continuous, α g-continuous, contra rg-continuous.

I. INTRODUCTION

Levine [10] introduced the class of g -closed sets in 1970. Maki.et.al [12] defined αg -closed sets in 1994. Arya and Tour [3] defined gs -closed sets in 1990. Dontchev [8], Gnanambal [9] Palaniappan and Rao[17] introduced gsp-closed set, rg -closed sets respectively. Veerakumar [18] introduced g* -closed sets in 1991.J.Dontchev [8] introduced gsp-closed sets in 1995.. The purpose of this paper is to introduce the concepts contra $(gsp)^*$ -continuous function.

II. PRELIMINARIES

- A. Definition 2.1: A subset A of topological space (X,τ) is called
- 1) a pre-open set[14] if $A \subseteq int(cl(A))$ and a pre-closed set if $cl(int(A)) \subseteq A$
- 2) a semi-open set [11] if $A \subseteq cl(int(A))$ and a semi-closed set if $int(cl(A)) \subseteq A$
- 3) a semi-preopen set[1] if $A \subseteq cl(int(cl(A)))$ and a semi-preclosed set[1] if
- 4) an α -open set [15] if $A \subseteq int(cl(int(A)))$ and an α -closed set [15] if $cl(int(cl(A))) \subseteq A$
- 5) a regular-open set[14] if intcl(A)=A and an regular-closed set[14] if A= intcl(A)

B. Definition 2.2: A subset A of topological space (X,τ) is called

- 1) a generalized closed set (briefly g-closed) [10] if $cl(A) \subseteq U$ whenever $A \subseteq U$
- 2) generalized semi-closed set(briefly) gs-closed [3] if $scl(A) \subseteq U$ whenever $A \subseteq U$ and U is open in (X, τ) .
- 3) an α generalized closed
- 4) set (briefly α g-closed) [12] if $\alpha cl(A) \subseteq U$ whenever $A \subseteq U$ and U is open in (X, τ)
- 5) a regular generalized closed set (briefly rg-closed) [17] if sp $cl(A) \subseteq U$ whenever $A \subseteq U$ and U is regular open in
- (X,τ)

C. Definition 2.3:A function f: $(X,\tau) \rightarrow (Y,\sigma)$ is called

- 1) Contra g-continuous [4] if $f^{-1}(v)$ is a g-closed set of (x,τ) for every open set v of (y,σ)
- 2) Contra α g-continuous[9] if $f^{-1}(v)$ is a α g-closed set of (x,τ) forevery open set v of (y,σ)
- 3) Contra gs-continuous [7] if $f^{-1}(v)$ is a gs-closed set of (x,τ) for every open set v of (y,σ)
- 4) Contra rg-continuous [17] if $f^{-1}(v)$ is a rg-closed set of (x,τ) for every open set v of (y,σ)
- D. Definition 2.4 : A function $f: (X,\tau) \rightarrow (Y,\sigma)$ from a topological space X into a topological space Y is said to be contra continuous if $f^{-1}(V)$ is closed in X for each open set V of Y.

Emerging Trends in Pure and Applied Mathematics(ETPAM-2018)- March 2018

E. Definition 2.5: A function $f: (X,\tau) \rightarrow (Y,\sigma)$ is called contra(gsp)*-continuous if

 $f^{-1}(V)$ is $(gsp)^*$ -closed in (X,τ) for each open set V of (Y,σ) .

1) Theorem: Let a function $f: (X,\tau) \to (Y,\sigma)$ be a map, where (X,τ) , (Y,σ) are spaces then f is contra(gsp)*-continuous iff the inverse image of every closed subset of (Y,σ) is gsp-open in (X,τ)

2) *Proof* Let F be a closed subset in (Y,σ) . Then Y-F is open in (Y,σ) Since f is contra(gsp)*-continuous, $f^{-1}(Y-F)$ is (gsp)*-closed. But $f^{-1}(Y-F) = X - f^{-1}(F)$ Thus $f^{-1}(F)$ is gsp open in (X,τ) Conversely, Let G be an open subset in (Y,σ) Then Y-G is closed in (Y,σ) Since the inverse image of every closed subset in (Y,σ) is gsp-open in (X,τ) $f^{-1}(Y-G)$ is gsp open in (X,τ) But $f^{-1}(Y-G) = X - f^{-1}(G)$ Thus $f^{-1}(G)$ is (gsp)*-closed. Therefore f is contra(gsp)*-continuous.

F. Theorem: Every contra-continuous function is contra(gsp)*-continuous.

1) Proof: Let $f: (X,\tau) \to (Y,\sigma)$ be contra-continuous.

Let V be any open set in Y. Then the inverse image $f^{-1}(V)$ is closed in X. Since every closed set is $(gsp)^*$ -closed. $f^{-1}(V)$ is $(gsp)^*$ -closed in X. Therefore f is contra(gsp)*-continuous.

G. Theorem: Every contra(gsp)*-continuous map is contra g-continuous.

But the converse is not true. 1) Proof Let $f: (X,\tau) \to (Y,\sigma)$ be contra(gsp)*-continuous. Let V be any open set in Y. Then the inverse image $f^{-1}(V)$ is $(gsp)^*$ -closed in X. Since every gsp*-closed set is g-closed. $f^{-1}(V)$ is g-closed in X. herefore f is contra g-continuous. 2) Example Let $X=Y=\{a, b, c\}$ $\tau = \{\varphi, X, \{a\}, \{a,b\}\}$ $\sigma = \{\phi, Y, \{b\}\}$ Let $f: (X, \tau) \to (Y, \sigma)$ be the identity map. Let us prove that f is contra g-continuous. But not contra(gsp)*-continuous. We have proved that the g-closed sets are φ , X, {c}, {a,c}, {b,c} And the gsp*-closed sets are φ , X, {c}, {b,c} $f^{-1}(\{a,c\}) = \{a,c\}$ is g-closed in (X,τ) Thus the inverse of every closed set of (Y,σ) is g-closed in (X,τ) but not $(gsp)^*$ -closed in (X,τ) . Hence f is contra g-continuous but not contra(gsp)*-continuous.

H. Theorem: Every contra(gsp)*-continuous map is contra α g-continuous. *I) Proof* Let *f*: (X, τ) \rightarrow (Y, σ) be contra(gsp)*-continuous.

Emerging Trends in Pure and Applied Mathematics(ETPAM-2018)- March 2018

To prove that, *f* is contra α g -continuous.

V be any open set in Y. Then the inverse image $f^{-1}(V)$ is $(gsp)^*$ -closed in X. Since every gsp^* -closed set is αg -closed. $f^{-1}(V)$ is αg -closed in X.

Therefore *f* is contra α g -continuous.

2) Example

Let $X=Y=\{a, b, c\}$

 $\tau = \{\varphi, X, \{a\}, \{a,b\}\}$

 $\sigma = \{ \phi, Y, \{b\} \}$

Let $f: (X,\tau) \to (Y,\sigma)$ be the identity map.

Let us prove that f is contra α g –continuous

But not contra(gsp)*-continuous We have proved that the α g -closed sets are φ , X, {b}, {c}, {a,c}, {b,c}

 $\varphi, X, \{c\}, \{b,c\}$

 $f^{-1}(\{a,c\})=\{a,c\}$ is αg -closed in (X,τ) but not $(gsp)^*$ -closed in (X,τ) . Hence f is contra αg -continuous but not contra $(gsp)^*$ -continuous.

REFERENCES

- [1] D. Andrijevic, semi- preopen sets, Mat. Vesnik, 38(1)(1986),24-32.
- [2] I. Arokiarani, K. Balachandran and J. Dontchev, some characterizations of gp-irresolute and gp-continuous maps between topological spaces, Mem. Fac. Sci. Kochi. Univ. Ser. A. Math., 20 (1999), 93-104
- [3] S.P. Arya and T. Nour, Characterization of s-normal spaces, Indian J.Pure. Appl. Math., 21 (1990), 717-719.
- [4] K. Balachandran, P. Sundaram and H. Maki, On generalized continuous maps in topological spaces, Mem. Fac. Kochi. Univ. Ser.A.Math., 12 (1991), 5-13.
- [5] R. Devi, K. Balachandran and H. Maki, generalized α -closed maps and α -generalized closed maps, Indian J.Pure.Appl.Math.,29(1)(1998),37-49.
- [6] R. Devi, H. Maki and K. Balachandran, Semi-generalized closed maps and generalized closed maps , Mem.Fac.Sci.Kochi.Univ.Ser.A.Math., 14(1993), 41-5
- [7] R. Devi, H. Maki and K. Balachandran, Semi-generalized homeomorphisms and generalized semi-homeomorphisms in topological spaces, Indian J.Pure.Appl.Math., 26(3)(1995), 271-284
- [8] J. Dontchev, on generalizing semi-preopen sets, Mem. Fac. Sci. Kochi. Ser. A, Math., 16 (1995), 35-48.
- [9] Y. Gnanambal, on generalized preregular closed sets in topological spaces, Indian J. Pure. Appl. Math., 28 (3)(1997),351-360
- [10] N. Levine, generalized closed sets in topology, Rend. Circ. Math. Palermo, 19 (2) (1970), 89-96.
- [11] N. Levine, semi-open sets and semi-continuity in topological spaces, Amer. Math. Monthly, 70 (1963), 36-41
- [12] H. Maki, R. Devi and K. Balachandran, Associated topologies of generalized α closed sets and α generalized closed sets, Mem. Fac. Sci. Kochi Univ. Ser. A, Math., 15 (1994), 51-63.
- [13] H. Maki, J. Umehara and T. Noiri, Every topological spaces is pre- $T_{1/2}$, Mem. Fac. Sci. Kochi. Univ. Ser. A, Math., 17 (1996), 33-42
- [14] A.S. Mashhour, M.E. Abd EI-Monsef and S.N.EI-Deeb, on pre-continuous and weak pre-continuous mappings proc.Math. and Phys.Soc.Egypt,53(1982),47-53.
- [15] O. Njastad, on some classes of nearly open sets, pacific J.Math., 15(1965), 961-970.
- [16] N. Nagaveni, studies on generalizations of homeomorphisms in topological spaces, Ph.D, thesis, Bharathiar University, Coimbatore, 1999.
- [17] N. Palaniappan and K.C. Rao, Regular generalized closed sets, Kyungpook Math.J.,33(2)(1993),211-219.
- [18] M.K.R.S. Veerakumar, Between closed sets and g closed sets, Mem. Fac. Sci. Kochi. Univ. Ser.A, Math., 17 (1996), 33-42.

45.98

IMPACT FACTOR: 7.129

INTERNATIONAL JOURNAL FOR RESEARCH

IN APPLIED SCIENCE & ENGINEERING TECHNOLOGY

Call : 08813907089 🕓 (24*7 Support on Whatsapp)