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Abstract: In this study, the analytical solution of a viscous and incompressible fluid towards an exponentially stretching porous 
sheet with surface heat flux in porous medium, for the boundary layer and heat transfer flow, is presented. Similarity 
transformations are used to convert the partial differential equations corresponding to the momentum and heat equations into 
highly non-linear ordinary differential equations. Analytical solutions of these equations are obtained by homotopy analysis 
method (HAM). It is found that the skin-friction coefficient increases with increasing the permeability parameter as well as with 
the suction parameter. Momentum and thermal boundary layer thickness decrease with increasing exponential parameter. 

I. INTRODUCTION 
The steady two-dimensional laminar flow of a viscous incompressible electrically    conducting fluid over an exponentially 
stretching sheet in the presence of a uniform transverse magnetic field with viscous dissipation and radiative heat flux. A porous 
medium or a porous material is a material containing pores (voids). The skeletal portion of the material is often called the "matrix" 
or "frame". The pores are typically filled with a fluid (liquid or gas). The skeletal material is usually a solid, but structures 
like foams are often also usefully analyzed using concept of porous media.  Heat transfer over a stretching surface with uniform 
or variable heat flux in micropolar fluids is investigated in this Letter. The boundary layer equations are transformed into ordinary 
differential equations, and then they are solved numerically by a finite-difference method. The Stretching surface is a quiescent or 
moving fluid is important in number of industrial manufacturing processes that includes both metal and polymer sheets.  An 
interesting fluid mechanical application is found in polymer extraction processes, where the object on passing between two closely 
placed vertical solid blocks is stretched in a region of  fluid saturated  porous medium.  The stretching imparts a unidirectional 
orientation to the extradite, thereby improving  its mechanical properties.  The liquid is meant to cool the stretching sheet whose 
property depends greatly on the rate which it is cooled and stretched in porous medium. is an equation that describes the flow of 
a fluid through a porous medium. The law was formulated by Henry Darcy based on the results of experiments on the flow 
of water through beds of sand, forming the basis of hydrogeology, a branch of earth sciences.    

             

The homotopy analysis method (HAM) is a semi-analytical technique to solve nonlinear ordinary/partial differential equations. The 
homotopy analysis method employs the concept of the homotopy from topology to generate a convergent series solution for 
nonlinear systems. 

A. Formulation Of The Problem 
Consider the flow of an incompressible viscous fluid past a flat sheet coinciding with the plane y = 0 in a porous medium with a 
non-uniform permeability k. In this analysis of the flow in the porous medium, the differential equation governing the fluid motion 
is based on Darcy’s law. Consider Cartesian coordinates (x; y; z). It is assumed that the sheet is associated to a variable heat flux 
(VHF) ݍ௪(ݔ). The fluid flow is limited to y > 0 . Two equal and opposite forces are applied along the x-axis so that the wall is 
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stretched keeping the origin fixed. The effect of these two equal and opposite forces cause a symmetric boundary at the center (the 
origin as shown in Fig) of the porous medium. For two-dimensional flow, the velocity field is considered as  

ܸ = ,(ݕ,ݔ)ݒ,(ݕ,ݔ)ݑ] 0] 
where u and v are the velocity components in x and y directions respectively. 

 
Figure : Geometrical representation of the problem. 

 
The governing equations of continuity, momentum and energy are 
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Thus ݒ = ఓ
ఘ
 is the kinematic viscosity, ߩ is the fluid density (assumed constant), ߤ is the coefficient of fluid viscosity, ܿ is specific 

heat at constant pressure, ߢ is the thermal conductivity of the fluid. The appropriate boundary conditions for the problem are given 
by 
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Here ܷ = ܷ݁
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ಽ  is the stretching velocity,  ݍ௪(ݔ) = ௪ݍ ܶට

బ
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݁
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ಽ  is the variable surface heat flux, ܷ,  ܶ ,  ௪   are the referenceݍ

velocity, temperature and heat flux respectively, ܸ(ݔ) = ܸ݁
ಿೣ
మಽ , a special type of velocity at the wall. Where  ܸ is a constant, 

(ݔ)ܸ > 0 is the velocity of suction and ܸ(ݔ) < 0 is the velocity of blowing, ݇ = ݇݁
ିಿೣಽ  is the non-uniform permeability of the 

medium, ݇ is a constant which gives the initial permeability, N is the exponential parameter. However, for the sake of comparison, 
we shall consider the case of prescribed surface temperature (PST), ܶ = ௪ܶ at ݕ = 0. 

B. Solution 
Introducing the similarity variables as  
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By substituting the above equations of (4) in (2) and (3) we get the required solution    
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And the boundary conditions take the following form: 
ߟ    ݐܽ   = 0,݂ᇱ = 1, ݂ = ᇱߠ,ܵ = ߟ   ݏܽ ݀݊ܽ    ,1− → ∞,݂ᇱ → ߠ,0 → 0 Where the prime denotes differentiation with  respect to  ߟ,
ܵ = బ

ටഌೆబ
మಽ

> ݎ) 0 < 0) is the suction parameter, ݇ଵ = ଶఔ
బబ

 is the permeability parameter,ܲݎ = ఓ


 is thePrandtl number.  

 
C. The Solution Of The Problem By Means Of Ham 
1) Zeroth-Order Deformation Problem 
For the problem, the zeroth-order deformation is 
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Where (p[0,1]) ℎ ≠ (݅ = 1,2)  are the respective embedding and auxiliary parameter such that  ߶(ߟ, 0) = ݂(ߟ),߶(ߟ, 1) =
,ߟ)Ψ   ݀݊ܽ   (ߟ)݂ 0) = ,ߟ)Ψ,(ߟ)ߠ 1) = ,ߟ)߶ ,Obviously when p varies from 0 to 1 .(ߟ)ߠ  to (ߟ)changes from the initial guess ݂ (
exact solution ݂(ߟ) and Ψ(,ߟ) from ߠ(ߟ) to (ߟ)ߠ.  
By Taylor’s series, we have, 
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D. Higher-Order Deformation Problem 
The mth-order deformation problems are 
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And  ߯ = ቄ0,   ݉ ≤ 1,
1,   ݉ > 1   

The general solution of the Equations (9)-(12) is  
                               ݂(ߟ) = ݂

(ߟ)∗ + ଵܥ + ߟଶܥ +   ଷ݁ିఎܥ
(ߟ)ߠ                                = ∗ߠ (ߟ) + ସܥ +   ହ݁ିఎܥ
In which ݂

∗ߠ and (ߟ)∗ ݅)ܥ represent the special solution of Equations (9) and (11) and the integral constants (ߟ) =
1, … ,5) can be computed by employing  the boundary conditions (10) and (12) as:  
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II. CONCLUSION 
In this paper, the analytical solutions for steady boundary layer flow and heat transfer over an exponentially stretching surface in 
porous medium with variable surface heat flux. The effect of suction parameter on a viscous incompressible fluid is to suppress the 
velocity field which in turn causes the enhancement of the skin-friction coefficient. Skin-friction coefficient is higher for suction 
than that of blowing. Momentum and thermal boundary layer thickness decrease with increasing N. The surface shear stress 
increases as the permeability parameter increases. With increasing Pr, temperature decreases and an increase in Prandtl number 
reduces the thermal boundary layer thickness. The homotopy analysis method is used to obtain the analytical solutions of a non 
linear Ordinary differential equations related to the boundary layer flow and heat transfer flow of a viscous and incompressible fluid 
towards an exponentially stretching porous sheet with surface heat flux in porous medium. The effect of the emerging parameters is 
discussed and the results are presented graphically. 
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