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Abstract: Impact of time periodic oscillation of small amplitude in a dielectric fluid subject to vertical ac electric field and a 
vertical temperature gradient is investigated for linear stability analysis.  Perturbation solution in powers of amplitude of applied 
temperature field is obtained. The effect of Prandtl number, thermal Rayleigh number and Roberts number on the onset of 
convection is studied. It is found that time -periodic body force leads to delay in convection. The system is most stable with 
respect to time-periodic body force. 
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I. INTRODUCTION 
The Rayleigh-Bènard convection(RBC) is a type of natural convection, where  a layer of fluid confined between two horizontal 
plates of infinite length, is heated from below and cooled from above. The upward heat transfer can be achieved by conduction, that 
is, in the absence of motion on the part of the fluid because its viscosity cannot be overcome by the buoyancy forces. If the fluid is 
heated sufficiently large enough (higher temperature gradient across the layer), then only the top heavy state becomes unstable and 
convective motion is ensured. Such a thermal instability is known as RBC. 
The Cattaneo equation was the first explicit mathematical correction of propagation of speed defect in the Fourier equation.  It 
contains an extra inertial term with respect to the Fourier law. This heat conductivity equation and conservation of energy equation 
introduce the hyperbolic equation which describes heat propagation with finite speed. Smita and Pranesh [1] studied the problem of 
the onset of Rayleigh-Bénard convection in a second order Colemann-Noll fluid by replacing the classical Fourier heat flux law with 
non-classical Maxwell-Cattaneo law. The eigenvalue problem is solved using the general boundary conditions on velocity and third 
type of boundary conditions on temperature. It is found that the classical Fourier heat flux law overestimates the critical Rayleigh 
number compared to that predicted by the non-classical law and that the results are noteworthy at short times. 
A liquid dielectric is a dielectric material in liquid state. Its main purpose is to prevent or satisfy electric discharges. It is used as 
electric insulators in high voltage applications such as transformers and capacitors. Liquid dielectrics are self-healing; when 
an electric breakdown occurs, the discharge channel does not leave a permanent conductive trace in the fluid.   The effect of uniform 
rotation on the onset of convective instability in a dielectric fluid under the simultaneous action of a vertical ac electric field and a 
vertical temperature gradient was considered by Takashima [2]. It is shown that the principle of exchange of stabilities is valid for 
most dielectric fluids.  
Time-periodic oscillations also known as gravity modulation/Time periodic body force. The effect of gravity modulation acts on the 
entire volume of the liquid and may have a stabilizing or destabilizing effect depending on the amplitude. The regulation of 
convection is important from the applications point of view and thermo gravitational vibration(g-jitter) is known to be an effective 
means of controlling instabilities. It is also of importance in the large-scale convection in atmosphere. Existence of adverse density 
variations within the fluid and a body force are the necessary conditions to initiate natural convection. The idea of using mechanical 
vibration as a tool to improve the heat transfer rate has received much attention. In the present paper the effect of time-periodic 
gravity modulation of the Rayleigh- Bénard convection problem on the heat transport in dielectric liquids is studied by linear 
analysis.  
Gresho and Sani[3] and Greshuni et al. [4] were the first to study the effect of time periodic oscillations in a fluid layer and they 
used small amplitude approximation. They predicted that certain flow parameters may stabilize or destabilize the system. 
Malashetty and Padmavathy [5] studied the effect of gravity modulation on the onset of convection in fluid and found that low 
frequency oscillations have a significant effect on the stability of the system. Pau and Li [6] discussed about the mechanism of flow 
reduction also further they suppress the convection in modulated gravity field. Shu et al. [7] examined the effect of gravity 
modulation and found that for low Prandtl number fluids, the modulation in both gravity and temperature gives the same flow field 
both in structure and in magnitude. Siddavaram and Homsy [8], [9] studied the effect of stochastic gravity modulation. Siddeshwar 
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and Annamma [10] discussed about the thermal instability of dielectric liquid when it is subjected to small amplitude and results in 
delay in convection. 
Skarda [11] studied the effect of gravity modulation in a Marangoni-Bénard problem. He observed that the instabilities are strongly 
influenced by the Prandtl number in Marangoni-Bénard problem while it is weakly affected by Prandtl number in the case of 
Rayleigh- Bénard problem.  
The available literature suggests that the problem of the onset of convection with time-periodic oscillations on the Maxwell-Cattneo 
dielectric fluids has not been explored. In this paper, we have made an attempt to study the effects of fluctuating gravity in a 
dielectric fluid with a vertical ac-electric field and vertical temperature gradient on the onset of Rayleigh-Bénard convection. 

II. MATHEMATICAL FORMULATION 
Consider an infinite horizontal layer of a Boussinesq dielectric fluid between two horizontal surfaces  z = 0 and z = d under the 
influence of  a uniform vertical ac electric field and a time periodically varying gravity forces ݃⃗ =  acting on it, where ((ݐ)݃−,0,0)
(ݐ)⃗݃ = ݃ [1 + [ݐߛݏܿߜ ݇ with ݃ being the mean gravity, ߜ the small amplitude, ߛ the frequency and ݐ the time. The lower and 
upper boundaries are maintained at different temperatures ܶ and ଵܶ respectively( ܶ > ଵܶ). A Cartesian co-ordinate system is 
considered with origin on the lower boundary and the z-axis normal to the fluid layer with these assumptions the governing 
equations to the problem are, 

 
Figure 1: Physical Configuration  

The relevant governing equation are given by   
Continuity equation 

                                       ∇. ݍ⃗ = 0,                                                                                             (1) 
Conservation of Linear Momentum 

ߩ ቂ
డሬ⃗
డ௧

+ ቃݍ⃗(∇.ݍ⃗) = +∇− (ݐ)⃗݃ߩ + ݍଶ⃗∇ߤ + ( ሬܲ⃗ ሬ⃗ܧ(∇.   ,                                        (2) 

(ݐ)⃗݃ = ݃ [1 + [ݐߛݏܿߜ ݇ 
 

Conservation of Energy 
                                     డ்

డ௧
+ ܶ(∇.ݍ⃗) = −∇. ሬܳ⃗  ,                                                                         (3) 

 
Maxwell Cattaneo Law 

                                 ߬ ቂడொ
ሬ⃗

డ௧
+ (∇.ݍ⃗) ሬܳ⃗ + ሬ߱ሬ⃗ × ሬܳ⃗ ቃ = − ሬܳ⃗ −   (4)                                                    ,  ܶ∇ߢ

Equation of state 
ߩ                         = −[1ߩ  ܶ)ߙ − ܶ)] ,                                                                      (5) 

 

Dielectric Fluid 
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Where, ݍ ሬሬሬ⃗  is the velocity vector, ሬܲ⃗  the dielectric polarization, ܧሬ⃗  the electric field, T the temperature, p the pressure, ߩ the fluid 
density, ߢ the thermal diffusivity, ߤ the fluid viscosity, ߙ the coefficient of thermal expansion, ߩ the density at a reference 
temperature ܶ = ܶ , ሬܳ⃗  the heat flux vector,  ߬ the constant relaxation time and ሬ߱ሬ⃗ =  ଵ

ଶ
(∇ × ሬ⃗ܧ∇ and the electric field gradient (ݍ⃗ . 

The relevant Maxwell equations are,  
                                               ሬܲ⃗ = ߝ]ߝ − ሬ⃗ܧ [1  ,                                                             (6) 
                                       ∇. ൫ߝߝܧሬ⃗ ൯ = 0  ,                                                                  (7) 
                                                   ∇ × ሬ⃗ܧ = 0 orܧሬ⃗ =∇߶,                                                  (8) 
ߝ                                                   = ߝ − ݁(ܶ − ܶ)  ,                                              (9) 
where, ߝ is the electric permittivity, ߶ the electric potential,  ߝ the relative permittivity or dielectric constant assumed to be linear 
function of temperature, ݁ > 0 and  ߝ = 1 + ߯ with ߯ being the electric susceptibility. 
 
We investigate the stability of a quiescent state subject to infinitesimal perturbations on the    unsteady   basic state described by, 

ݍ⃗ = ݍ⃗ = , (0,0,0) = ߩ, (ݖ) = ܶ,(ݖ)ߩ = ܶ(ݖ) , ሬܳ⃗ = ሬܳ⃗  = ሬ⃗ܧ,(ߚߢ,0,0) = ሬ⃗ܧ  = ൫0,0,ܧ(ݖ)൯,

ሬܲ⃗ = ሬܲ⃗ = ൫0,0, ܲ(ݖ)൯, ߝ = = ߶, (ݖ)ߝ ߶(ݖ) ,ߚ = ܶ − ଵܶ

݀ ,
ቑ  (10) 

where, the subscript b denotes the basic state. In the undisturbed basic state, the temperature ܶ,            density ߩ, permitivitty ߝ , 
the dielectric polarization ሬܲ⃗ , the electric potential ߶ satisfies the following equations, 
                                                                    ܶ = ܶ −                             (11)                                   ,ݖߚ 
ߩ                                                                   = [1ߩ +                              (12)                               ,[ݖߚߙ
ߝ                                                             = (1 + ߯) ቂ1 + ఉ௭

ଵାఞ
ቃ,                         (13) 

ܧ                                                                                  = ாబ(ଵାఞ)
ଵାఞାఉ௭

 ,                                (14) 

                                                      ሬܲ⃗ = ܧߝ ቈ(1 + ߯) − ଵ

ቀଵା ഁ
భశഖ

ቁ
   ݇,                 (15)  

                                                           ߶ =  (ଵାఞ)ாబ
ఉ

݈݃ ቂ1 + ఉ௭
ଵାఞ

ቃ,                       (16)            

where, ܧ is the value of the electric field at z = 0. We examine the stability of the equilibrium state by means of linear stability 
analysis. 

A. Linear Stability Analysis 
Let the basis state be disturbed by an infinitesimal thermal perturbation, so that 
ݍ⃗ = ݍ⃗ + ᇱݍ⃗  = ᇱݒ,ᇱݑ) ,(ᇱݓ,  =  + ,ᇱ ߩ = ߩ + ܶ,ᇱߩ = ܶ + ܶᇱ,ܧሬ⃗ = ሬ⃗ܧ  + ሬ⃗ܧ ᇱ, ሬܲ⃗ = ሬܲ⃗ + ሬܲ⃗ ᇱ,

ߝ = ߝ + = ߶,ᇱߝ ߶ + ߶ᇱ, ሬܳ⃗ = ሬܳ⃗  + ሬܳ⃗ ,ᇱ
ቋ  (17) 

 
where prime indicates that the quantities are infinitesimal perturbations. Substituting (17) in (1) to (9)  and using basic state 
solutions we get, 

ߩ
డ
డ௧

(∇ଶωᇱ) = (ସωᇱ∇)ߤ + ݃[1ߩߙ + ଵଶTᇱ∇[ݐߛݏܿߜ + கబୣమబమஒ
ଵା

∇ଵଶTᇱ − εeEβ
ப
ப

(∇ଵଶ߶ᇱ),      (18) 

 

                                           ቀ1 + ߬ డ
డ௧
ቁ ቀడ்

ᇲ

డ௧
− ᇱቁݓߚ = ଶܶᇱ∇ߢ − ఛఉ

ଶ
∇ଶݓᇱ ,                                (19) 

 

                                                  (1 + ߯)∇ଶ߶ᇱ − ܧ݁
డ்ᇲ

డ௭
=  0 ,                                                   (20) 

 

 where, ∇ଵଶ= பమ

ப୶మ
+ பమ

ப୷మ
.  

Non-dimensionalzing (18), (19) and (20) using the length, time, velocity, temperature and electric potential scales d, ୢ
మ


, 


ௗ

,݀ߚ, ாబఉௗ
మ

ଵାఞ
,  we obtain  
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                      ଵ


డ
డ௧

(∇ଶݓ) = ∇ସݓ + (ܴ[1 + [ݐߛݏܿߜ + −ଵଶT∇(ܮ L ப
ப

(∇ଵଶ߶) ,                           (21) 
 

                                                     ቀ1 + ܥ2 డ
డ௧
ቁ ቀడ்

డ௧
− ቁݓ = ∇ଶܶ − C∇ଶ(22)                                 ,ݓ 

 
                                                                       ∇ଶ߶ − డ்

డ௭
= 0,                                                      (23) 

 
where,   

ݎܲ = ఓ
ఘబ

                       (Prandtl number) 

 

              ܴ = ఈఘబబఉௗర

ఓ
                  (Thermal Rayleigh number) 

ܮ       = கబ൫ୣబஒୢమ൯
మ

ఓ(ଵାఞ)                             (Roberts number) 

 
ܥ        = ఛ

ଶௗమ
                                        (Cattaneo number) 

 
Equations (20) and (21) are solved subject to the conditions, 

ݓ = ݓଶܦ = ܶ = ߶ܦ = ݖ ݐܽ 0 = 0,1.                                                                           (24) 
Eliminating w from equations (20) and (21), we get an equation for T in the form,  
 

1

ቀ1− ଶ∇ܥ + ܥ2 డ
డ௧
ቁ
ቈ

1
ݎܲ

߲ଶ

ଶݐ߲ ∇
ସ + 2C

1
ݎܲ

߲ଷ

ଷݐ߲ ∇
ସ +

1
ݎܲ

߲
ݐ߲ ∇

 − ∇
߲
ݐ߲ − ܥ2

߲ଶ

ଶݐ߲ ∇
 − ∇଼ܶ 

 
= [ܴ(1 + ߜ cosݐߗ)∇ଶ∇ଵଶ]ܶ                                                                               (25 

B. Method of Solution 
We now seek the eigen-function T and eigen-values R of the equation (25) in the form 

(R, T) = (ܴ, ܶ) + ,ଵܴ)ߜ ଵܶ) + ,ଶ(ܴଶߜ ଶܶ) +⋯                                                  (26) 
where, ܴ is the Rayleigh number for the unmodulated RBC in a Maxwell cattaneo dielectric fluid . 
The expansion of (26) is substituted into equation (25) and the coefficients of like powers of  ߜ are equated on either side of the 
equation. The resulting system of equations upto the order of O(ߜଶ) is, 

L ܶ  =  0,                                                                                           (27) 
 

ܮ  ଵܶ = (ܴଵ + ܴ݂)∇ଵଶ ܶ,                                                                      (28) 
 

ܮ  ଶܶ = (ܴଵ + ܴ݂)∇ଵଶ ଵܶ + (ܴଶ + ܴଵ݂)∇ଵଶ ܶ ,                                     (29) 
 

where, 

         L = ቂ ଵ


డమ

డ௧మ
∇ସ + 2C ଵ


డయ

డ௧య
∇ସ + ଵ


డ
డ௧
∇ − ∇ డ

డ௧
− ܥ2 డమ

డ௧మ
∇ − ∇଼ቃ − ቀ1− ଶ∇ܥ + ܥ2 డ

డ௧
ቁ ଶ∇ଵଶ∇ܮ +                ቀ1− ଶ∇ܥ +

ܥ2 డ
డ௧
ቁ ܮ డమ

డ௭మ
∇ଵଶ − ቀ1− ଶ∇ܥ + ܥ2 డ

డ௧
ቁ∇ଶ∇ଵଶܴ     (30) 

 
The zero order problem is equivalent to the problem of RBC in a Maxwell-Cattaneo dielectric fluid layer in the absence of thermal 
modulation. 
The marginally stable solution of the unmodulated problem is 
 

                                        ܶ =  sinݖߨ ݁(௫ା௬),                                                                        (31) 
where, ݈ ܽ݊݀ ݉ are wave numbers in ݕ ݀݊ܽ ݔ direction.  
The corresponding eigen value is given by,  
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                                       ܴ = ల

మ(ଵାమ)−
൫మିగమ൯

మ
  ,                                                               (32) 

where,  ݇ଶ = ଶߨ + ܽଶ   and       ܽଶ = ݈ଶ +݉ଶ is the overall horizontal wave numbers of the convective disturbances. 
(28) becomes,  

ܮ                                              ଵܶ = (ܴ ݂ܶ + ܴଵ ܶ)∇ଶ∇ଵଶ ,                                                       (33) 
If the above equation is to have a solution, the right hand side must be orthogonal to the null-space of the operator L. This implies 
that the time independent part of the RHS of the equation (33) must be orthogonal to sinݖߨ  Since f varies sinusoidaly with time, the 
only steady term on the RHS of equation (33) is ܴܽଶ݂ sinݖߨ  so that ܴଵ = 0.  From (26) odd coefficients are made zero. 
Using (30), we find that,  

ݖߨsinൣܮ  ݁(௫ା௬ିఆ௧)൧ = (ߗ)ܮ sinݖߨ ൣsinݖߨ  ݁(௫ା௬ିఆ௧)൧,                                  (34) 
where,  

(ߗ)ܮ = ଵܻ + ݅ ଶܻ 

ଵܻ = −
1
ݎܲ ݇

ସߗଶ − ଶߗ݇ܥ2 − ଼݇ − (ܴ + ଶܽଶ݇(ܮ − ݇ସܽଶܥ(ܴ + (ܮ + ଶܽଶ(1ߨܮ +  (ଶ݇ܥ

ଶܻ = ܥ2−
1
ݎܲ ݇

ସߗଷ +
1
݇ߗݎܲ

 ݇ߗ− + ଶ݇ܮ)ଶܽߗܥ2 − ଶߨܮ + ݇ଶܴ) 

 
The particular solution of (33) is given by 

        ଵܶ =
1

ଶ|(ߗ)ܮ| ( ଵܻ  cosݐߗ − ଶܻ sinݐߗ)(ܴܽଶ  sin(35)                                            ,(ݖߨ 

The solution of the homogeneous equation corresponding to (33) involves a term proportional to sinݖߨ . As ܴଵ = 0 from (29) we 
obtain 

ܮ         ଶܶ = (ܴ ଵ݂ܶ + ܴଶ ܶ)∇ଶ∇ଵଶ,                                                                    (36) 
To determine ܴଶ we orthoganalise RHS of (36) to sinݖߨ .  
 ∫ ܴଶ ܶ sinݖߨ = −∫ ܴ ଵ݂ܶ

ଵ


ଵ
 sinݖߨ , 

 
Taking time average we get, 

                                         ܴଶ = − ோబమమమభ
ଶ|(ఆ)|మ   .                                                                          (37) 

 
This value of ܴଶ is negative. It is called the critical Rayleigh number. 

III. RESULTS AND DISCUSSION 
An analytical solution is obtained from this study. The regular perturbation method based on small amplitude of modulation is 
employed to compute the value of Rayleigh number and corresponding wave number. The expression for critical Rayleigh number 
ܴଶ is computed as a function of frequency of modulation Ω, Roberts number L and Cattaneo number C. The effect of these 
parameters on the stability of the system is analyzed graphically. The sign of ܴଶ characterizes the stabilizing or destabilizing the 
effect of modulation. The negative value of ܴଶ shows the destabilized system. From the graphs it is observed that there is delay in 
onset of convection by the effect of imposed time periodic oscillations. 
The variation of correction Rayleigh number ܴଶ with frequency modulation Ω for different values of Roberts number L and fixed 
value of the Cattaneo number C is shown in figures (2) ,(3) and (4).          We observe that with increase in frequency modulation 
and Roberts number, the correction Rayleigh number  ܴଶ decreases. This destabilizes the system. The increase in frequency of 
modulation and Roberts number there is decrease in ܴଶ.  
The variation of correction Rayleigh number ܴଶwith frequency modulation Ω for different values of Cattaneo number C and fixed 
value of the Roberts number L is shown in figures (5) ,(6) and (7).        We observe that with increase in frequency modulation and 
Cattaneo number, the correction Rayleigh number  ܴଶ decreases. This destabilizes the system. The increase in frequency of 
modulation and Roberts number there is decrease in ܴଶ.  
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Figure 2: The plot of correction Rayleigh number R2 vs frequency of  Modulation Ω  for different values of Roberts number L by 

taking Cattaneo number as C = 0. 

 
Figure 3:The plot of correction Rayleigh number R2 vs frequency of Modulation Ω  for different values of Roberts number L by 

taking Cattaneo number as C = 0.1. 

 
Figure 4:The plot of correction Rayleigh number R2 vs frequency of Modulation Ω  for different values of Roberts number L by 

taking Cattaneo number as C = 0.01. 
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Figure 5:The plot of correction Rayleigh number R2 vs frequency of modulation Ω for different values of cattaneo number C with L 

= 10. 

 
Figure 6:The plot of correction Rayleigh number R2 vs frequency of modulation Ω for different values of cattaneo number C  with 

L = 50. 
 
 
 
 
 
 
 
 
 
 
 
 
 

 

Figure 7:The plot of correction Rayleigh number R2 vs frequency of modulation Ω for different values of cattaneo number C with L 
= 100. 
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4. CONCLUSION 
From the study we conclude that the gravity modulation leads to delay in convection. Thus, it is also possible to regulate heat 
transfer with the help of time-periodic vertical oscillations and applied electric field. As the value of C increases the critical 
Rayleigh number becomes stable. 
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