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Abstract: The problem of study of heat transfer in the MHD flow of an incompressible second-order fluid through a porous 
channel has been discussed. Behaviour of the temperature profile has been studied for the different sets of values of Reynolds 
number (R), second-order parameter (2) and Hartmann number (S). 
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I. INTRODUCTION 
The heat transfer in the flow of an electrically conducting fluid between porous boundaries is of practical interest in problems of 
gaseous diffusion etc. Terrill and Shrestha1 have discussed the problem of steady laminar flow of an incompressible viscous fluid in a 
two dimensional channel when the walls are of different permeability and studied the effects of magnetic field when the fluid is 
electrically conducting2. The problem of flow of a second-order fluid with heat transfer in a channel with porous walls has been 
considered by Agarwal3. Sharma & Singh4 have studied the numerical solution of the flow of second-order fluid through a channel 
with porous walls under a transverse magnetic field. 
The purpose of the present paper is an attempt to study the heat transfer in the flow of a second-order fluid through a channel with 
porous walls under a transverse magnetic field by regular perturbation technique. The second-order effects on the temperature profile 
are illustrated graphically for different values of the Hartmann and Reynolds number. The results are also obtained for the Newtonian 
fluid by taking the second-order parameter to be zero. 

II. FORMULATION OF THE PROBLEM 
The constitutive equation of an incompressible second-order fluid as suggested by Colemann and Noll5 can be written as: 

ij = - pij + 21dij  + 22eij +  43cij   ------------------------------------------ ( 1 ) 

where  
    d ij = ½ (ui,j + uj,i),                       
    e ij = ½(ai,j + aj,i) + um

,ium,j,          
               c ij =  dim dm

j.                              ------------------------------------------------- ( 2 ) 
p is the hydro-static pressure; ij is the stress-tensor; ui and ai are the velocity and acceleration  vector and 1, 2, 3 represent material 
constants whose values are given by 1 = 18.5, 2 = - 0.2 and 3 = 1.0 (all expressed C.G.S. units) for a 5.46 percent solution of poly-
iso-butylene in cetane at 300C as suggested by Markovitz6. 
The heat transfer in the steady two dimensional flow of an incompressible second-order fluid in a channel, of width 2h consisting of 
two porous walls (coinciding with the plane y = ±h) of equal permeability is considered. The whole system of the channel is 
constructed in such a manner that its bottom and top becomes perfectly insulated and does not transmit the heat. A constant magnetic 
field H0 is applied normal to the axis of the channel. The induced magnetic field has been neglected in the flow since the magnetic 
Reynolds number is small. A uniform suction V is applied to the both the walls of the channel. Let us choose the origin of a 
rectangular co-ordinate system in the middle of the channel with x and y axes respectively in a plane parallel and perpendicular to the 
channel walls. Let u and v be the components of the velocity in x and y directions respectively. 
Following Terrill and Shrestha1 a stream function  can be defined as 

 (x,) = (hU – Vx) f()                               --------------------------------------- (3) 
where U is the entrance velocity and  (= y/h) is the dimensionless distance while 2h is the distance between the channel walls. In non-
dimensional form the velocity field by Terrill and Shrestha1 is taken as: 

u (x, ) = (U – Vx/h) f ’() 
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v () = V f ()                  ----------------------------------------------------------------- (4) 
where dash denotes differentiation with respect to . The expression (4) suggests that u is a function of x and , while v is a function of 
 only. Using this fact, the constitutive equation (1) the equation of continuity and momentum equations can be written as: 

u / x + (1 / h) v /  = 0        ------------------------------------------------- (5) 
u u / x + (v / h) u /  = - (1/) p / x + (1/h2) 2u / 2 + 2 [ (1 / h2) 2 / 2{ u u / x +  
                         (v/h) v / } + ( 2 / h2)  / (u / x.v/)] +(3 / h2) /x (u / )2 - e

2 H0
2  u /   

                                                                                                      ------------------------ (6) 
vv /  = -(1/) p /  + (1 / h) 2v / 2 + 2[( 2 / h ) 2 / 2{( v/h)v / } + 2/x (u/x .u / )  
                + (4/h2){ u /  . 2u / 2 + v /  . 2v / 2} - 2 / x  { u u / x + (v/h) u / }] +  
                (3 / h2)[4  /  (v / )2 +   /  ( u / )2]            ---------------- (7) 
 cv ( u T / x + v T / y) = k (2T / x2  +  2T / y2) +      --------------------- (8) 

where  is the density, e is the magnetic permeability,  is the electric conductivity, 1 ( = 1/) is the kinematic viscosity, 2 ( = 
2/) is the kinematic elastico-viscosity, 3 (= 3/) is the kinematic coefficient of cross-viscosity, cv is the specific heat at constant 
volume, k is the thermal conductivity   and  = y/h is the dimensionless distance. 
The viscous dissipation function () is given by      = i

j dj
i           -------------------------------------------------- (9) 

where i
j is the mixed deviatoric stress tensor 

The boundary conditions are, 
    u (x, ±1) = 0, (u / )=0 = 0, 
    v (x, 0) = 0, v(x, 1) = V, v(x, -1) = - V, 
    T(x, 1) = T1, T(x, -1) = T-1.      ---------------------------------------- (10) 
 
Substituting (4) in equation (6) and (7) and eliminating p from the obtained equation, we get 
 
    f iv + R (f ’ f ’’– f f ’’’ ) + 1 (f f v – f ’ f iv ) – S2 f ’’ = 0,     ---------------------------(11) 
where R (= Vh/1) is the suction Reynolds number, 1(= 2V / h1) is an elastico-viscous parameter governing the effects of elastico-
viscosity of the fluid and S [= eH0 h ( / 1)1/2] is the Hartmann number. 
Equation (8) together with equation (4) suggests the form of the temperature distribution as follows: 
    T = T-1 + (1 V) [ () + (U/V – x/h)2()] /( h Cv)           .------------------------------ (12) 
Using equation (12) in equation (8) and equating the coefficient of (U/V – x/h)2 and terms independent of  
(U/V – x/h)2 on both sides of the resulting equation, we obtain  
    ’’ – 2RPf’ + 2 + 8RPf ’2 + 8R2 P 2 f f ’ f ’’ = 0,             ------------------------------ (13) 
    ’’ – 2RPf’ + 4RP f ’ + 2RPf ’’ 2 + 2R2 P 2( f f ’’ f ’’’ – f ’ f ’’ 2) = 0.    ------- (14) 
where P = 1cv / k is the Prandtl number, 2 = 22 / (h2) is the second-order parameter. 
The expression of the temperature distribution in the dimensionless form can be expressed as: 
    T * = (T – T-1) / (T1 – T-1) = E ( + 2 ),     -------------------------------------- (15) 
where   = (U/V – x/h) is the dimensionless distance. 

III. SOLUTION OF THE PROBLEM 
Assuming the relationships 1 = - R1 (1  0) and S2 = RS1

2 eqn. (11) becomes 
    f iv + R (f ’ f ’’– f f ’’’ ) – R1 (f f v – f ’ f iv ) – RS1

2f ’’ = 0  ----------------------- (16) 
For small values of the suction Reynolds number R, we can develop a regular perturbation scheme for solving eqns. (13), (14) & (16) 
by expanding f,  and  in powers of R. Substituting 
    f () =  Rn fn ()    -------------------------------------------- (17) 
     () =  Rn n ()    -------------------------------------------- (18) 
     () =  Rn n ()    -------------------------------------------- (19) 
In eqns. (13),(14) &(16) and equating the like powers of R on the two sides of the resulting equations, we obtain the following sets of 
equations: 
    f0

iv = 0, 
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    f1
iv + f0’ f0’’ – f0 f0’’’ - 1( f0 f0

v  – f0’ f0
 iv  ) - S1

 2 f0’’ = 0, 
               f2

iv + f1’f0’’ + f0’f1’’ – f1 f0’’’–f0 f1’’’-1(f1 f0
v+f0 f1

 v  – f1’f0
iv  – f0’ f1

iv ) - S1
2 f1’’ = 0. 

                                                                                    --------------------------------- (20) 
    0’’ = 0, 
   1’’ – 2 P f0 0’ +  4 P 0 f0’ + 2 P f 0’’2 = 0, 
               2’’–2P( f1 0’+f0 1’ )+4P(1 f0’+f1’0+f0’’ f1’’)+ 2P2 (f0 f0’’ f0’’’ - f0’ f0’’2 ) = 0         
                                                                           ------------------------- (21) 
    0’’ + 2 0 = 0, 
   1’’ – 2 P f0 0’ + 2 1 + 8 P f 0’ 2 = 0, 
               2’’ – 2P ( f1 0’ + f0 1’ ) + 2 2 + 16 P f0’ f1’ + 8P2 f0 f0’ f0’’  = 0.  --------(22) 
Boundary condition (10) can be rewritten as: 
    fn(0) = fn’(1) = fn’’ (0) = 0                  n 
               f0(1) = 1,          fn (1) = 0      n  1   
    n (-1) = 0       n                0(1) = 1/E = w (say),  
               n(1) = 0,     n  1                  n ( ±1) = 0        n    ------------------------------- (23) 
The solution of the equation (20), (21), (22) subjected to the boundary condition (23) is given as follows: 
    f0 () = (1/2) (3 - 3),      
    f1 () = - (1/280) (7 – 3 3 + 2 ) - (S1

2/40)( 5 - 23 + ),     
    f2 () = (1/1293600) (1411 – 385 9 + 1987 + 876 3 – 703 ) – (1/280){(37 –  
                            93 + 6 )+ S1

2 (7 – 33 +2)} - S1
2 {(1/100800) (159 + 1087 - 545 –  

                            276 3 + 207 ) + (S1
2/8400)(57 - 215 + 273 – 11)}.  --------------- (24)   

    0 () = 0,  
    1() = (3/2)P(1 - 4), 
    2() = 3P2 { 383/280 - 8/56 - 6/10 + 4/2 – (3/2) 2} – P{(9/280) (1- 4) 2 + 
                            (S1

2/10)(1 + 26 - 34)} – (3/5)P2 (1 - 6).   ------------------------------ (25) 
               0() = (w/2)( + 1), 
    1() = (wP/40)(103 - 5 - 9) – (P/2)( 212 + 6 -6 4 – 16),   
    2() = P2 [(29 10/ 840 – 51 8/ 140 + 37 6/20 – 9 4/2 – 1149 2/280 + 595/84) +   
                            ( w/40) (1391 / 2520 – 9 3/2 + 99 5/20 – 15 7/14 + 5 9/72)] –  
                           P[11/168 – 332/280 +11 4/140 – 3 6/140 – 3 8/280 + 10/168 – S1

2  
                           (2 2/5 – 13 8/280 + 6/5 – 7 4/20 – 57/280) + 2(3 – 3 2/5 – 3 8/10 +  
                           12 6/5 – 9 4/2) – w {(71/100800  - 3/840 + 35/5600- 9 /20160) +  
                           S1

2(19 /8400 - 7/1680 + 5/400 - 3/240)}].         ------ (26) 

IV. RESULTS AND DISCUSSIONS 
A. The values of the function f0, f1 and f2 are identical to those obtained by Sharma and  
B. For 2 = 0 the results are in good agreement with those obtained by Terrill and  Shrestha 
C. For S = 0 the results are matching with those obtained by Agarwal3. 

The variation of the temperature profile at P=0.4,  = 0.4, E = 1, S1 = 1, 2 = -1 for  
R = 0.01, 0.1, 1.0 is represented in fig (1). It is evident that for R = 0.01 temperature increases linearly with  throughout the channel, 
for R = 0.1 temperature slightly increases with  throughout the channel and for R = 1.0 temperature increases very rapidly first and 
start decreasing rapidly thereafter. 
The variation of the temperature profile at P=0.4,  = 0.4, E = 1, S1 = 1, R = 1 for  
2 = 0, 0.1, 1.0 is represented in fig (2). It is evident that temperature increases very rapidly first and start decreasing rapidly thereafter. 
The variation of the temperature profile at P=0.4,  = 0.4, E = 1, R = 1, 2 = -1 for S1 = 0,1, 2 is represented in fig (3). It is evident that 
temperature increases very rapidly first and start decreasing rapidly thereafter. 
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Fig (1) Variation of the temperature T* With  for different values of Reynolds Number (R) 
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Fig (2) Variation of the temperature T* with  for different values of 2 
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Fig (3) Variation of the temperature T* With  for different values of Hartman Number (S) 
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