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Abstract - Adaptive weight calculation (AWC) is required in many communication applications including adaptive 
beamforming, equalization, predistortion and multiple-input multiple-output (MIMO) systems. These applications involve 
solving over-determined systems of equations in many cases. In general, the least squares approach, e.g. Least Mean 
Squares (LMS), Normalized LMS (NLMS) and Recursive Least Squares (RLS), is used to find an approximate solution to 
these kinds of system of equations. Among them, RLS is most commonly used due to its good numerical properties and fast 
convergence rate. Applying QR decomposition (QRD) to perform adaptive weight calculation based on RLS avoids this 
problem and leads to more accurate results and efficient architectures. QR decomposition is a method for solving a set of 
simultaneous equations, for unknown weights, which define the beam shape. The QR decomposition technique for adaptive 
weight calculation is particularly suited to implementation in FPGA and FPGA cores are now available that reduce the 
system development time.  
Index Terms – LMS (Least Mean Square), RLS (Recursive Least Square), QRD (Quadratic Rotation Decomposition) 

I. INTRODUCTION 

Filtering in the most general terms is a process of noise removal from a measured process in order to reveal or enhance 
information about some quantity of interest. Any real data or signal measuring process includes some degree of noise from 
various possible sources. The desired signal may have added noise due to thermal or other physical effects related to the signal 
generation system, or it may noise may get added due to the measuring system or a digital data sampling process. Often the 
noise is a wide-sense stationary random process (has a constant finite mean and variance, and an autocorrelation function 
dependent only on the difference between the times of occurrence of the samples), which is known and therefore may be 
modelled by a common statistical model such as the Gaussian statistical model. It may also be random noise with unknown 
statistics. Otherwise, it may be a noise that is correlated in some way with the desired signal itself. Filtering, strictly means the 
extraction of information about some quantity of interest at the current time t by using data measured up to and including the 
time t.  Smoothing, involves a delay of the output because it uses information extracted both after and before the current time t 
to extract the information. The benefit expected from introducing the delay is more to do with accuracy than filtering. 
Prediction, involves forecasting information some time into the future given the current and past data at time t and before. De 
convolution, involves the recovery of the filter characteristics given the filter’s input and output signals. Filters can be classified 
as either linear or nonlinear types. A linear filter is the one whose output is some linear function of the input. In the design of 
linear filters it is necessary to assume stationarity (statistical-time-invariance) and know the relevant signal and noise statistics a 
priori. The linear filter design attempts to minimise the effects of noise on the signal by meeting a suitable statistical criterion. 
The classical linear Wiener filter, for example, minimises the Mean Square Error (MSE) between the desired signal response 
and the actual filter response. The Wiener solution is said to be optimum in the mean square sense, and it can be said to be truly 
optimum for second-order stationary noise statistics (fully described by constant finite mean and variance). For non stationary 
signal and/or noise statistics, the linear Kalman filter can be used. Very well developed linear theory exists for both the Wiener 
and Kalman filters and the relationships between them. 

II. LEAST MEAN SQUARE (LMS) 

Least mean square (LMS) algorithms are class of adaptive filter used to mimic a desired filter by finding the filter coefficients 
that relate to producing the least mean squares of the error signal (difference between the desired and the actual signal). It is a 
stochastic gradient descent method in that the filter is only adapted based on the error at the current time. The algorithm starts 
by assuming a small weights (zero in most cases), and at each step, by finding the gradient of the mean square error, the weights 
are updated. That is, if the MSE-gradient is positive, it implies, the error would keep increasing positively, if the same weight is 
used for further iterations, which means we need to reduce the weights. In the same way, if the gradient is negative, we need to 
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increase the weights. So, the basic weight update equation is given in  
wn+1 = wn - μΔε[n] 

where, ε represents the mean-square error. The negative sign indicates that, we need to change the weights in a direction 
opposite to that of the gradient slope.  
 

A.  LMS Algorithm Summary 
The LMS algorithm for a pth order algorithm can be summarized as follows: 
 
Parameters: P = filter order  
        μ = step size  
Initialization: ĥ (0) = 0 
Computation: For n = 0, 1, 2...  
X(n) = [x(n), x(n - 1), …, x(n – p + 1)]T 

e(n) = d(n) – ĥH(n) X(n)                                                
ĥ(n+1) = ĥ(n) + μ e∗(݊) X(݊)  

 
B.  Convergence and Stability of LMS  

As the LMS algorithm does not use the exact values of the expectations, the weights would never reach the optimal weights in 
the absolute sense, but a convergence is possible in mean. That is even-though, the weights may change by small amounts, it 
changes about the optimal weights. However, if the variance, with which the weights change, is large, convergence in mean 
would be misleading. This problem may occur, if the value of step-size μ is not chosen properly. Thus, an upper bound on μ is 
needed which is given as 0 < μ < 2λmax. where λmax is an autocorrelation matrix, its eigen vales are non negative. If this 
condition is not fulfilled, the algorithm becomes unstable. The convergence of the algorithm is inversely proportional to the 
eigen value spread of the correlation matrix R. When the eigen values of R are widespread, convergence may be slow. The 
eigen value spread of the correlation matrix is estimated by computing the ratio of the largest eigen value to the smallest eigen 
value. If μ is chosen to be very small then the algorithm converges very slowly. A large value of μ may lead to a faster 
convergence but may be less stable around the minimum value. Maximum convergence speed is achieved in equation  

μ = ଶ
୫ୟ୶ା୫୧୬

 
where λmin is the smallest eigen value of R. Given that μ is less than or equal to this optimum, the convergence speed is 
determined by λmin, with a larger value yielding faster convergence. This means that faster convergence can be achieved when 
λmax is close to λmin, that is, the maximum achievable convergence speed depends on the eigen value spread of R.  
 

C.  LMS Adaptive Filter 
The LMS adaptive filter using distributed arithmetic can be realized by using adders and memories without multipliers, that is, it 
can be achieved with a small hardware. A Distributed Arithmetic (DA) is an efficient calculation method of an inner product of 
constant vectors, and it has been used in the DCT realization. Furthermore, it is suitable for time varying coefficient vector in 
the adaptive filter. Cowan and others proposed a Least Mean Square (LMS) adaptive filter using the DA on an offset binary 
coding. However, it is found that the convergence speed of this method is extremely degraded. This degradation results from an 
offset bias added to an input signal coded on the offset binary coding. To overcome this problem, an update algorithm 
generalized with 2’s complement representation has been proposed and the convergence condition has been analyzed. The 
effective architectures for the LMS adaptive filter using the DA have been proposed. The LMS adaptive filter using distributed 
arithmetic is expressed by DA-ADF. The DA is applied to the output calculation, i.e., inner product of the input signal vector 
and coefficient vector. The output signal is obtained by the shift and addition of the partial-products specified with the bit 
patterns of the N-th order input signal vector. This process is performed from LSB to MSB direction at the every sampling 
instance, where the B indicates the word length. The B partial-products used to obtain the output signal are updated from LMB 
to MSB direction. There exist 2N partial-products, and the set including all the partial-products is called Whole Adaptive 
Function Space (WAFS). Furthermore, the DA-ADF using multi-memory block structure that uses the divided WAFS (MDA-
ADF) and the MDA-ADF using half-memory algorithm based on the pseudo-odd symmetry property of the WAFS (HMDA-
ADF) have been proposed. The divided WAFS is expressed by DWAFS. An N-tap input signal vector S(k) is represented in 
equation. 

S(k) = [s(k), s(k - 1), ..…, s(k – N + 1)] T 
where, s(k) is an input signal at k time instance, and the T indicates a transpose of the vector. The output signal of an adaptive 
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filter is represented in  
y(k) = ST(k) W(k) 

where, W(k) is the N-th coefficient vector represented in equation  
W(k) = [w0(k),w1(k),.....,wN-1(k)] T 

and the wi(k) is an i-th tap coefficient of the adaptive filter. The Widrow’s LMS algorithm is represented in equation 
W(k + 1) 	= 	W(k) + 2μe(k)S(k) 

where, the e(k), μ and d(k) are an error signal, a step-size parameter and the desired signal, respectively.  
 

The step-size parameter determines the convergence speed and the accuracy 
of the estimation. The error signal is obtained by the following equation  

e(k) 	= 	d(k)	– 	y(k) 
Type	equation	here.The fundamental structure of the LMS adaptive filter is shown in Figure. The filter input signal s(k) is 
fed into the delay-line, and shifted to the right direction every sampling instance. The taps of the delay-line provide the delayed 
input signal corresponding to the depth of delay elements. The tap outputs are multiplied with the corresponding coefficients, 
the sum of these products is an output of the LMS adaptive filter. The error signal is defined as the difference between the 
desired signal and the filter output signal. The tap coefficients are updated using the products of the input signals and the scaled 
error signal. 

 
Figure. 2.1. Fundamental Structure of the 4-tap LMS adaptive filter. 

 
III. RECURSIVE LEAST SQUARE (RLS) 

 
The Recursive least squares (RLS) adaptive filter is an algorithm which recursively finds the filter coefficients that minimize a 
weighted linear least squares cost function relating to the input signals. The RLS algorithms are known for their excellent 
performance when working in time varying environments but at the cost of an increased computational complexity and some 
stability problems. In this algorithm the filter tap weight vector is updated using the following equations. 

w(n) = wT(n-1) + k(n) en-1(n) 
k(n) = u(n) / (λ+XT (n) u(n)) 

u(n) = wλ-1(n-1) X(n) 
 

The above two equations are intermediate gain vector used to compute tap weights. Where λ is a small positive constant very 
close to, but smaller than 1. The filter output is calculated using the filter tap weights of above iteration and the current input 
vector is given by the following equation  

yn-1(n) = wT(n-1) X(n)                                               
en-1(n) = d(n) – yn-1(n) 

 
In the RLS Algorithm the estimate of previous samples of output signal, error signal and filter weight is required that leads to 
higher memory requirements. The RLS Filter block recursively computes the least squares estimate (RLS) of the FIR filter 
weights. The block estimates the filter weights, or coefficients, needed to convert the input signal into the desired signal. 
Connect the signal you want to filter to the Input port. The input signal can be a scalar or a column vector. Connect the signal 
you want to model to the Desired port. The desired signal must have the same data type, complexity, and dimensions as the 
input signal. The Output port outputs the filtered input signal. The Error port outputs the result of subtracting the output signal 
from the desired signal. The corresponding RLS filter is expressed in matrix form as follows  
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k(n) =
λିଵP(n − 1)u(n)

1 + λିଵuୌ(n)P(n − 1)u(n)
 

y(n) 	= 	w(n− 1)u(n) 
e(n) 	= 	d(n)	– 	y(n)                                                

w(n) = 	w(n− 1) + kୌ(n)e(n) 
P(n) 	= 	 λିଵP(n− 1) −	λିଵ1	k(n)uୌ(n)p(n− 1) 

where λ-1 denotes the reciprocal of the exponential weighting factor.  
 

IV.  QR DECOMPOSITION 
 

In linear algebra, a QR decomposition (also called a QR factorization) of a matrix is a decomposition of a matrix A into a 
product A = QR of an orthogonal matrix Q and an upper triangular matrix R. QR decomposition is often used to solve the linear 
least squares problem, and is the basis for a particular eigenvalue algorithm, the QR algorithm. If A has n linearly 
independent columns, then the first n columns of Q form an orthonormal basis for the column space of A. More specifically, the 
first k columns of Q form an orthonormal basis for the span of the first k columns of A for any 1 ≤ k ≤ n. The fact that any 
column k of A only depends on the first k columns of Q is responsible for the triangular form of R.  
 

A. QR Decomposition Methods 
There are three different QR decomposition methods: Gram-Schmidt orthogonormalization, Givens Rotations (GR) and 
Householder reflections. GR is preferred because of its stability and accuracy. GR lends itself easily to a systolic array 
architecture using CORDIC blocks which makes an efficient hardware implementation. Therefore, it is often used for hardware 
implementation. However, it was shown that the modified Gram-Schmidt (MGS) method is numerically equivalent to Givens 
rotations method. A wide variety of computationally intensive applications are moving from Digital Signal Processors (DSPs) to 
Field Programmable Gate Arrays (FPGAs) because FPGA architectures present designers with substantially more parallelism 
allowing more efficient application implementations. Moreover, FPGAs are a flexible, cost effective alternative to Application 
Specific Integrated Circuits (ASICs). FPGAs are perfect platforms for arithmetic operations such as matrix decomposition as 
they provide powerful computational architectural features, e.g. embedded multipliers, shift register LUTs (SRLs), Block RAMs 
(BRAMs), DSP blocks and DCMs (Digital Clock Managers). If used correctly, these features can enhance the performance and 
throughput significantly. We will discuss the design decisions that we encountered as we customized our design to utilize the 
FPGA architectural features. 
 

B. Computing the QR Decomposition 
There are several methods for actually computing the QR decomposition, such as by means of the Gram–Schmidt 
process, Householder transformations, or Givens rotations. Each has a number of advantages and disadvantages. 
 
1) Using the Gram–Schmidt process: Consider the  Gram – Schmidt process applied to the columns of the full column rank 

matrix , with inner product or  for the complex case 

                             (4.1) 
then: 

   (4.2) 
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We then rearrange the equations (4.2) above so that the s are on the left, using the fact that the  are unit vectors. 
 
a)  Example 
 
Consider the decomposition of (4.3) 
 

           (4.3) 
 

Recall that an orthogonal matrix  has the property (4.4) 
 

                                               (4.4) 
 

Then, we can calculate  by means of        Gram–Schmidt as follows in equation (4.5) and (4.6) 
 

  (4.5) 

(4.6) 
 
Thus, we have transpose and R value in equations (4.7) and (4.8) 
 

                   (4.7) 
 

    (4.8) 

V.   CONCLUSION AND RESULTS 
  

A. Conclusion 
QR decomposition of matrix is one of the important problems in the field of matrix theory. Besides, there are also so many 
extensive applications that using QR decomposition. The QR decomposition is often used for counting the eigen values from 
giant matrix or for solving the least square problem. Therefore, the QR decomposition is not only an important problem in 
matrix theory, but also has an extensive application prospect. Adaptive beamforming is a commonly employed technique in 
which the system is able to operate in an interference environment by adaptively modifying the antenna array pattern so that the 
nulls are formed in the angular locations of the interference sources. In this work we compared the algorithms for adaptive 
beamforming such as LMS and RLS. The comparison is based on the MSE and the Weight Error in db. It can be shown that 
RLS performs well over the LMS while considering the two parameters. The error rate of the RLS is low as compared with the 
LMS. Hence the RLS provide better performance than the RLS algorithm. 
 

B. Future Enhancement 
In future enhancement, the QRD - RLS of FPGA implementation is adapted using CORDIC blocks. Here we reduce the number 
of adders by using the QRD – RLS algorithm. So the iteration processes get reduced. Obviously the power in the circuit is 
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effectively reduced.  
 

C.  Experimental Results 
The following figure shows a simulation results for least mean square. 

 
 

Figure 5.1 Simulation results for LMS 

The following figure shows a simulation results for Recursive least square. 

 

Figure 5.2 Simulation results for RLS 

The following figure shows a simulation results for QR Decomposition 

 

 

Figure 5.3 Simulation results for QR Decomposition 
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