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Abstract: This research proposes to implement transmogrification process in the Imputation procedures to overcome the
challenges in missing values. Appropriate data pre-processing methods in data mining plays significant role to ensure good
quality of data. The data pre-processing tasks include identification of outliers, smoothening noisy data and overcoming
inconsistent data. Issues related to data incompleteness, still remains a challenge to many researchers. The transmogrified
method uses mathematical approach and Index segmentation based Imputation Algorithm for missing data imputation. The
databases were used to demonstrate the performance of the proposed method. The proposed algorithm is evaluated by extensive
experiments and comparison with KNNI, MSC, AHC, EM-GMM and FEM-GMM The results showed that the proposed
algorithm has better performance than the existing imputation algorithms in terms of classification accuracy.
Keywords: k-Nearest neighbor, Mean-shift Clustering (MSC), Naive Bayesian Imputation and Expectation — Maximization
Clustering, Gaussian Mixture

I. INTRODUCTION
Missing values has long been an unavoidable problem that occurs to almost data-driven solutions. There are various causes such
as incomplete data collection, data entry errors, incompetent data acquisition from experiments, and unfinished responses to a
questionnaire [1]. This raises a significant problem towards data analysis, especially to those learning Models that are compatible
only with a complete data set. Over the past decades, Provision of innovative research aiming to fill in missing vales is
continuously developed [2]. A rich collection of data pre-processing techniques has been made available, including zero
imputation, average imputation, minimum imputation, maximum imputation, expectation maximization, linear regression
imputation and k-nearest neighbours. Unlike the conventional approach that excludes any record with missing values, the
aforementioned statistical and machine learning methods attempt to predict those with the values close to the original data. In this
research the following supervised and unsupervised learning algorithms are compared with the proposed algorithm.

Il. LITERATURE REVIEW
Past Literature pertaining to Missing data imputation techniques to compute the missing value for the missing record or attribute
and fill the estimated value from other reported values were surveyed. In review of literature Missing data imputation techniques
are classified as ignorable missing data imputation and non-ignorable missing data imputation. In the literature many researchers
have proposed missing data imputation techniques such as Cold-Deck Imputation, Imputation with K-Nearest Neighbor (KNNI),
K-means Clustering Imputation (EM-GMM), Imputation with Fuzzy K-Means Clustering, imputation with Agglomerative
Hierarchical clustering (AHC), Imputation with Mean-shift Clustering (MSC), Naive Bayesian Imputation and Expectation —
Maximization Clustering using Gaussian Mixture Models (EM-GMM) Algorithm.
Il. METHODOLOGY

In this article Transmogrification of Imputation Algorithm for Clustering of Data is dealt with novel for missing data imputation,
the transmogrified method uses mathematical approach and Index segmentation based Imputation Algorithm for missing data
imputation. The databases were used to demonstrate the performance of the proposed method. The proposed algorithm is
evaluated by extensive experiments and comparison with KNNI - Imputation with K-Nearest Neighbor, MSC- Imputation with
Mean-shift Clustering, AHC- Agglomerative Hierarchical clustering, EM-GMM- Expectation — Maximization Clustering using
Gaussian Mixture Models and Naive Bayesian Model. An imputation strategy Transmogrified approach is described to compute
the proximity measure in the feature missing space between the missing data to identify the nearest neighbor missing data from
where the values are to be imputed.,
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Input: dataset with Clustered missing values in the set U.
T=Set of all observed tfransaction ID’s, & required data
Output: Imputed missing data P

Scan the transaction data base DB once Divide the DS into M segments
Collect F, the set of Frequent Items & support of each FI

Step 1: Select the missing dataset record S from the set M and impute missing values
Step 2: Impute missing values based on proximity measures with all the members of U
Do begin
Set P to be Empty

Create the root of the Fl, were T with null

While If no response from user
Do begin
Fetch the next incoming transaction (T) From dataset

Step 3:  for each
Frequent 2-data Xin F
do beginning
For each
Segment S in the dataset Do begin

Aggregate the count of each set of X with in sum of counts respectively;
End for each

End for each

Step 4: let the shorted Fl list in transaction be [p | P], P-remaining list, p-first element
For each
Combination (denoted B) of the nodes in P do End for each

Step 5: for(iinT)
Process the dataset (U)), Ui, ts, U; ave, [Si]
If (exist (1 Sil)) Output I;
End if;
Ui* required data size (Ui "9, §insert element (e,U)
Continue for delete element (U) For every split of U into U=U0:U1;
Insert element (item I, list U)
Create a new segment V with content i and capacity |
Uu f{v} (ie., add i to the head U) Output t Compress segments (U);
Delete element (List U);
Remove a segment from tail of list U Update element (List U);

Step 6: Train the dataset into training (TR;) and testing (T;) sets,
Step 7: foreachr

i) Build Clustering set using the records obtained from T;;
ii) Compute the probabilities using the test dataset TR,
iii) Identify and collect the actual decision result TR

Step 8: stop;

Transmogrified Imputation Algorithm for clustering data in Missing Data Imputation
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IV. EVALUATION AND RESULTS
In this section we present An Improved novel Index Measured segmentation based Imputation Algorithm for missing data In this
section we present our study and the classification accuracies are presented in Table 1 describes a dataset and Table 2 describes a

performance. An Improved novel Index Measured segmentation based Imputation
Algorithm (with cross folds) is also compared with other algorithms (KNNI, MSC, AHC, EM-GMM, NBM and FEM-GMM)

on the real valued datasets and categorical data sets.

Table 1: Datasets Used For the Experiment

Datasets Records Attributes
IBM Log data set 56865 182
Sonar data set 32578 45

Table 1: Test accuracies of Transmogrified clusters and normal clusters

Dataset KNNI MSC EM- AHC FEM-GMM NBM
GMM

IBM Log 60.64 64.90 66.78 70.45 74.54 78.40
data set —

Transmogrifi

ed cluster

Sonar data | 80.96 81.37 84.28 87.89 90.52 93.85
set-

Finally Fig.1 shows that the real values datasets accuracy with A novel Index Measured segmentation based Imputation Algorithm
(with cross folds). Thus we conclude that our algorithm is the best approach to imputing the missing values, as they led to the
statistically significant improvements in prediction accuracy. Thus the present results might generalize to different types of data
sets (nominal and/or numeric).

Test accuracies of Transmogrified clusters and normal clusters

m IBM Log data set-
Transmogrified cluster

m Sonar data set-
Transmogrified cluster

ACCURACY

IBM Log data set-Normal
cluster

m Sonar data set-Normal
cluster

Fig.1 Accuracy on real value datasets with INMSI-Algorithm

V. CONCLUSION

Missing values are very prominent in a real world database. In this article, Transmogrified Imputation Algorithm for Clustering of
Data in Missing Data is described. It is an Improved novel Clustering Algorithm where Transmogrification of Data based
Imputation Algorithm of missing values is discussed, that aims to improve in terms of accuracy. The test accuracies of
Transmogrified clusters and Normal clusters were compared using two different data sets IBM Log file data set and Sonar data
set, with the state-of- the art methodologies of real world imputation algorithms on categorical and real values of benchmark
datasets. We conclude that the use of our Transmogrified Imputation Algorithm for Clustering of Data in Missing Data improved
the accuracies of the predictions on real world missing data value problems.
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