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Abstract: ICBMI and CBMIboth the algorithms react to changes in the data stream. By entering the second part of the Dataset, 
as the concept changes, the ICBMI gradually reduces the average of the data stream sizes while the CBMI abruptly reduces the 
data stream size to remove the obsolete transactions and their effects on the mining result. At this point, for the ICBMI, the 
average of data stream sizes now contains both these concepts. In fact the ICBMI, for some Missing Data, therefore the max 
frequency data streams reside in both new and old parts of the Dataset because it considers the complete history of the input 
stream and does not completely discard the previous concept. 
Index Terms--stream Data, Multiple Imputation, Missing Data, ICBMI, and CBMI 

I. INTRODUCTION 
The first version of CBMI is computationally expensive, because it checks exhaustively all “large enough” sub data streams of the 
current data stream for possible cuts. Furthermore, the content of the data stream is kept explicitly, with the corresponding memory 
cost as the data stream grows. To reduce these costs a new version ICBMI is introduced. ICBMI uses ideas developed in data stream 
algorithms to find a good cut point quickly. This data structure is a variation of exponential histograms, a data structure that 
maintains an approximation of the number of 1’s in a main stream Data Multiple Imputation of length W with logarithmic memory 
and update time. Also this structure adopted in a way that can provide this approximation simultaneously for about O(logW) sub 
data streams whose lengths follow a geometric law, with no memory overhead, with respect to keeping the count for a single data 
stream. That is, our data structure will be able to give the number of 1s among the most recently t - 1, t - bcc, t - bc2c,....,t - bcic,… read 
bits, with the same amount of memory required to keep an approximation for the whole W.  Keeping the exact counts for a fixed 
data stream size is probably impossible in sub linear memory. We go around this problem by shrinking or enlarging the data stream 
strategically, so what would otherwise be an approximate count happens to be exact. 

II. PERFORMANCE OF CBMI AND ICBMI ALGORITHM 
In this section we present our ICBMI algorithm. The ICBMI uses simplified Chernoff bound concepts to calculate the appropriate 
data stream size for mining Missing Data.  It uses now the comparison of the two data stream sub-range observations and Data 
counts when a segment occurs within the data stream and then adjusts the data stream size appropriately. However, for an itemset, 
its max-frequency data stream moves forward if a data stream with higher frequency is found in the reminder of the input stream. 
The following table clearly represents the efficiency between ICBMI and the CBMI for different Datasets UNF-BARCLAY’S 
DATA SET, UNF-BOEING DATA SET, BARCLAY’S DATA SET, and BOEING DATA SET 

 
 
 
 
 
 
 
 
 
 
 
 
 

CBMI Algorithm 

Input: T = set of all observed transaction IDs 

δ = required data streams 

Output: t = set of all present Missing Data IDs 

Initialise:   ∀݅ ∈ ݅ݓ,ܶ ← 1 

while( getNextTransaction) do 

    for (i in T) 

processData stream(Wi) →,pi,t’s, pi
avg

,|Si| 

              if ( itemExist(|Si |) 

                       output i 

             end if 

wi
* ← requiredData streamSize(pi

avg ,δ) 

if (itemexists ^ | S2i | = 0) 

wi← max (min{ wi /2, wi
*  } , 3) 

             else if (detectTransaction(|Si|,wi, pi
avg)) 

wi← max{( wi - 2),3} 

             else if (wi
* >wi ^ |Si| <wipi

avg) 

wi← min{( wi + 2), wi
* } 

             end if 

  end for 

end while 
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III.COMPARISON OF ICBMI AND CBMI 
The Data and its max-frequency data stream information are now deleted, if its support falls below the Support Threshold. Through 
experiment, after each segment the, average of the Maximum Frequency Data Stream Sizes of the ICBMI was compared to the 
current data stream size of CBMI. 
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(d) 

Fig. 2.Comparison of ICBMI and CBMI 

The above figure shows how the data stream sizes of both the algorithms change as new segments are received. As shown in this 
figure1 (a), (b), (c) and (d) both the algorithms react to changes in the data stream. By entering the second part of the Dataset, as the 
concept changes, the ICBMI gradually reduces the average of the data stream sizes while the CBMI abruptly reduces the data stream 
size to remove the obsolete transactions and their effects on the mining result. At this point, for the ICBMI, the average of data 
stream sizes now contains both these concepts. In fact the ICBMI, for some Missing Data, therefore the max frequency data streams 
reside in both new and old parts of the Dataset because it considers the complete history of the input stream and does not completely 
discard the previous concept. 

IV. CONCLUSION 
Through experiment, after each segments the, average of the Maximum Frequency Data Stream Sizes of the ICBMI was compared 
to the current data stream size of CBMI. The ICBMI gradually reduces the average of the data stream sizes while the CBMI abruptly 
reduces the data stream size to remove the obsolete transactions and their effects on the mining result. At this point, for the ICBMI, 
the average of data stream sizes now contains both these concepts.In fact the ICBMI, for some Missing Data. 
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