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Abstract: The major objective of the present study is to determine the vibrational characteristics of simply supported functionally 
graded GNP reinforced composite plates with various graphene nano platelets (GNP) distributions, weight fractions of GNP, 
length-to-thickness ratio through-the-thickness by means of a higher order displacement model. The equations of motion for the 
present model are derived using the Hamilton’s principle. The vibration characteristics of the model in the closed form are 
obtained by using Navier’s method under simply supported boundary conditions. The fundamental frequency of FG-GNP 
reinforced composite rectangular plate under the given boundary conditions are presented for different aspect ratios. The 
present results are compared with the solutions of the other FSDTs available in the literature. It can be concluded that the 
proposed theory is accurate and efficient in estimating the vibration characteristics of FG-GNP plates. 
Keywords: Vibrational characteristics, FG-GNP plates, effective material properties, HSDT, Hamilton’s principle, Navier’s 
Method. 

I. INTRODUCTION 
Functionally graded materials (FGMs) are new type of composites involving continuously varying micro structure, which lead to 
variation of physical and mechanical properties through the thickness. Because of these features application of functionally graded 
materials (FGM) has increased in present days. These materials are advanced, heat resisting, erosion and corrosion resistant and 
components made of  FG materials can be used in many engineering fields such as aero space, mechanical, nuclear energy, chemical 
plant, electronics and bio medical applications. Graphene is an effective reinforcement material in the case of composite material for 
the variety of applications. Graphene is an amazingly pure substance with simple and orderly structure based on tight, regular, 
atomic bonding, which is carbon based material in fact it behaves much more like a metal(though the way it conducts electricity is 
different) because of this  some scientists describe it as semi metal or a semiconductor. Graphene filled polymer or ceramic matrix 
Functional graded composites exhibit continuous improvements in properties such as thermo mechanical, chemical, light in weight, 
dimensional stability, heat and corrosion resistance and electrical conductivity. By the concept of functionally graded (FG) materials, 
a new type of FG-graphene nano platelets (GNP) reinforced composite, has been proposed making use of graphene as the 
reinforcements in a functionally graded composite and the fabrication process is powder metallurgy. Graphene reinforced 
composites derived with a non-uniform distribution of graphene through the matrix material. The present work deals with the 
analytical formulations and solutions for the vibration analysis of FG-GNP reinforced composite plates using higher order shear 
deformation theory (HSDT) without enforcing zero transverse shear stress on the top and bottom surfaces of the plate. The 
theoretical model presented which incorporates the transverse extensibility which accounts for the transverse effects. Thus a shear 
correction factor is not needed. The plate material properties will be changing through the thickness direction. The governing 
equations and boundary conditions for plate are derived by using the principle of virtual work also called as Hamilton’s Principle. 
Solutions are obtained for FG-GNP reinforced composite plates in closed-form using Navier’s technique and solving the Eigen 
value equation.  

II. THEORETICAL FORMULATION AND DEVELOPMENT OF HIGHER ORDER THEORY 
The thick FG-graphene reinforced composite plate shown in Fig. 1 is studied in this investigation. The plate is subjected to 
transverse loads. The length, width and thickness of the FG-graphene reinforced composite plate are a, b and h respectively. Nx and 
Ny define the in-plane loads along the x and y directions, respectively. Two types of distributions for the graphene in the FG-
graphene reinforced composite plates are studied, and these graphene configurations are  displayed in Fig. 2, where the uniform 
distribution and the other graphene distribution are denoted by UD and FGX respectively. In FGX, the top and bottom surfaces of 
the plate is graphene-rich. The effective  youngs modulus is  
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 =  E||  + E┴                                       …... (2.a)   

Where Longitudinal modulus E||  and Transverse modulus E┴ can be determined by Halpin-Tsai model 

E||  =  ×EM                         …… (2.b) 

 

E┴=  ×EM                                 …… (2.c) 

Where 

=                                            .....(2.d) 

=                                       ......(2.e) 

and  are young’s moduli of polymer matrix and graphene platelets (GNPs) respectively,  is GNP volume fraction, 
 and  are the parameters characterizing both the geometry and size of GNP nano platelets , defined as 

= 2(                                                     ......(2.f) 

= 2(                                                   ......(2.g) 

In which  ,  and  are the average length , width, and thickness of the GNPs respectively. Mass density  and 
poission’s ratio  of the GPN / polymer nano composite can be calculated by rule of mixture (ROM). 

 =  +                                   ...... (2.h) 
  =  +                                    ....... (2.i) 
Where VM  is the volume fraction of polymer matrix,  is volume fraction of GNP is calculated by given formula                        

                          ....... (2.j) 

in which  is the fraction of weight of the graphene, and  and  are densities of the matrix and graphene nano platelets. 
are the volume fractions of the graphene and matrix, and their sum must be equal to 1, that is . 

 
Figure 1 Schematic diagram of the two distributions of graphene. 
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The weight fractions of the two distribution types expressed as: 

 ,(UD)                                                                                .......(2.k) 

 , (FGX) .......(2.l) 
 
A. Displacement Model 

In formulating the higher-order shear deformation theory, a plate of  and  is considered as shown 

in figure.2 

 
Fig.2 Functionally graded plate with coordinates. 

In order to approximate 3D-elasticity plate problem to 2D one, the displacement components u (x, y, z), v (x, y, z) and w (x, y, z) at 
any point in the plate are expanded in terms of the thickness coordinate. The elasticity solution indicates that the transverse shear 
stress varies parabolically through the plate thickness. This requires the use of a displacement field, in which the in-plane 
displacements are expanded as cubic functions of the thickness coordinate. The displacement field which assumes w (x, y, z) 
constant through the plate thickness thus setting  is expressed as: 















),(),,(
      ),(),(),(),(),,(

),(),(),(),(),,(
*3*2

*3*2

yxwzyxw
yxzyxvzyxzyxvzyxv

yxzyxuzyxzyxuzyxu

o

yoyo

xoxo





     ........ (2.1) 
Where the parameters , ,  denote the displacements of a point (x, y) on the mid-plane. The functions ,  are rotations of 

the normal to the mid-plane about y and x axes, respectively. The parameters are the corresponding higher-order 
deformation terms. 
In present work, analytical formulation and solution were obtained without enforcing zero transverse shear stress conditions on the 
top and bottom surfaces of the plate. In formulating the theory, the following assumptions are considered: 
1) The layers are perfectly bonded together. 
2) The material of each layer is linearly elastic and has three planes of material symmetry (i.e., Orthotropic). 
3) Each layer is of uniform thickness. 
4) The strains and displacements are small. 
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B. Strain- displacement Relations: 
The higher-order theories introduce additional unknowns that are often difficult to interpret in physical terms. The third order 
laminate theory with transverse inextensibility based on the displacement field is shown in Eq. (2.1). 
By substitution of the displacement relations in Eq. (2.3) in to strain displacement equations of the classical theory of elasticity the 
following relations are obtained: 
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C. Constitutive Relations 
Since  = 0, the transverse normal stress , although not zero identically, does not appear in the virtual work statement and hence 
in the equations of motion. Consequently, it amounts to neglecting the transverse normal stress. Thus we have, in theory, a case of 
plane stress. For an FG-graphene reinforced composite laminate, the plane stress reduced elastic constants and the transformed plane 
stress reduced elastic constants will be same i.e., . The linear constitutive relations for the plate in the given coordinates 
(x-y-z) are: 
 

                                       ........(2.3.a)
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are the stresses and are the linear strains with respect to the laminate axes. 

are the transformed plane stress reduced elastic constants in the plate axes of the Lth lamina.

  ,   ,   , 

  
 
where,  

 = Young’s modulus of elasticity in the i direction. 
 = Poisson’s ratios that give strain in the j direction due to stress in the i direction. 

=shear moduli 
D. Equations of motion: 
The work done by actual forces in moving through virtual displacements, that are consistent with the geometric constraints of a 
body is set to zero to obtain the equations of motion and this is known as energy principle. It is useful in deriving governing 
equations, boundary conditions and obtaining approximate solutions by virtual methods. For simple mechanical systems, for which 
the free body diagram is set up, the vector approach provides an easy and direct way of deriving governing equations. However, for 
complicated systems the procedure becomes more cumbersome and intractable. In such cases, energy principles provide alternative 
means to obtain the governing equations and their solutions. In the present study, the principle of virtual work is used to derive the 
equations of motion of laminated plates. 
   The governing equations of higher-order theory for Eq. (2.1) will be derived using the dynamic version of the principle of virtual 
displacements, i.e. 

0)(
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                                                   .......(2.4.a) 

Where, 
U = Virtual strain energy  
V = Virtual work done by applied forces  
K = Virtual kinetic energy 
U+V=total potential energy 
The virtual strain energy, work done and kinetic energy are given by 
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                                …….(2.4.b).  

Where, 
q = distributed load over the surface of the plate. 
0 = Density of plate material  
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0u = u0 / t, 0v = v0 / t etc. indicates the time derivatives 

On substituting for U, V and K from Eq. (2.4.b) in to the virtual work statement in Eq. (2.4.a) and integrating through the 
thickness of the plate, rewriting it in matrix form and the stess strain relations of plate given by;  
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Transverse force resultants and the inertias are given by: 
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  By substituting Eq. (2.3.a) into Eq. (2.4.f), upon integration these expressions are rewritten in a matrix form which defines the 
stress/strain relations of the laminate are given by:  
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Q, Q* denotes the transverse force resultants and also 
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III.  VIBRATION ANALYSIS OF FG-GRAPHENE PLATES USING HSDT 
Composite rectangular plates are generally classified by referring to the type of support used. The analytical solutions of the above 
equations for simply supported FG-graphene plates are dealt here. Assuming that the plate is simply supported in such a manner that 
normal displacement is admissible, but the tangential displacement is not, solution functions that completely satisfy the boundary 
conditions in the equations below are assumed as:   
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The mechanical load is expanded in double Fourier sine series as: 
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Where, 

a
m  and

b
n

  and m and n are modes numbers, and ω is the natural frequency of the system. 

The natural frequencies and vibration modes for the plates by solving the Eigen value problem ([S] – ω2 [M]) X = 0, where X are the 
modes of vibration associated with the natural frequencies defined as ω. 

IV. RESULTS AND DISCUSSIONS 
A. Comparative Study 
Validation of the present higher-order shear deformation theory in predicting the frequencies of a simply supported functionally 
graded GNP reinforced composite plates, examples are presented and discussed. 
The polymer Epoxy  is selected as the matrix. The material properties of which are: 

 
GNP graphene nano platelets  are taken as the reinforcements and  its properties are: 

, 
 ,  

 and  
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 ,  and  aZre the average length , width, and thickness of the GNP’s and their values respectively 
2.5µm,1.5µm,1.5nm.Effective material properties of the composite with 1% weight fraction of GNP is reinforced is 

=10.2892 , 

 =0.338,and =1.1984 . 

The GNP  volume fractions at different weight fractions are caluculated and tabulated in Table.I 
 

TABLE .I 
Different Weight Fractions And Their Voume Fractions Of Gnp’s 

 
 
  
 
 
Presently computed results for different values of Weight fraction and side-to-thickness ratios (a/h) are  presented in Table II. For 

convenience, natural frequency ω has been non-dimensionalized as . 

From Table II, it can be observed that the values slightly lower than Mahhamad Arefi et al [2]  in which FSDT theory was used for 
the analysis purpose. Where the HSDT  approach gives accurate results than FSDT because of that we get lesser values than FSDT 
results. 

 
TABLE .II 

Comparison of non-dimensional natural frequency ( ) subjected to  Sinusoidal  loading 

Weight 
Fraction 

=1 

a/h = 10 a/h  = 20 

Present  FSDT[2] Present FSDT[2] 

UD 0.12037 0.1216 0.1348 0.1378 

FG-X 0.05894 0.06121 0.0734 0.0742 

TABLE  5.3 
Non-Dimensional Natural Frequency  FG – GNP Composite Plate For Various Distributions At Different Side To Thickness Ratios 

Subjected To Sinusoidal Loading 
Side-to-thickness 

ratio 
Type of 

Distribution =0.2  = 0.6 = 1 

10 
UD 0.04012 0.069112 0.120378 

FG-X 0.005577 0.083634 0.1348048 

20 
UD 0.010514 0.02979 0.058944 

FG-X 0.011936        0.044312 0.0734661 

50 
UD 0.0042021 0.01278 0.023579 

FG-X 0.0056243 0.0135002 0.037801 

100 
UD 0.0021278 0.00604 0.011789 

FG-X 0.003504 0.007462 0.0131185 
 
 

Weight fraction )% Volume fraction )% 
0.2 0.002264 
0.6 0.006787 
1 0.011314 
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B. Comparative study: 
The variation of Fundamental frequency with the change in side-to-thickness ratio and for different GNP distributions at various 
weight fractions are presented in Table .3. These results are plotted and compared with the standard values. 

 
Figure. 3 Effect of side to thickness ratios on the non-dimensional natural frequency of UD plate  at different weight   fractions              

 
Figure.4 Effect of side to thickness ratios on the non-dimensional natural frequency of FG-X plate at different weight fractions 

. 

 
Figure.5 Comparison of non-dimensional natural frequency of FG-GNP plate for different distributions  at  
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Figure.6 Comparison of non-dimensional natural frequency of FG-GNP plate for different distributions  at  

 
Figure.7 Comparison of non-dimensional natural frequency  of FG-GNP plate for different distributions of FG-GNP plate for 

different distributions at   

 
Figure.8 Effect of volume fractions on the non-dimensional natural frequency of a uniformly distributed FG-GNP plate for different 

values of a/h ratios 
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         Figure.9 Effect of volume fractions on the non-dimensional natural frequency  of a FG-X plate for different values of a/h ratios 

Fig.3 and Fig.4 shows the variation of the non-dimensional natural frequency with respect to side-to-thickness ratios (a/h) for 
various distributions of GNP, according to present higher-order shear deformation theory. From this, it is clear that the effect of 
decreasing frequencies is felt with the increase in a/h ratio for simply supported boundary conditions. The effect of shear 
deformation decreases with the increasing values of a/h and decreasing values of weight fraction                                              
Figure.5 Figure.6 and Figure.7 shows the comparison of of FG-GNP plate for different distributions at various weight fractions of 
GNP. It is clear from these graphs that X-distribution is more effective than the uniform distribution of as the variation of  is 
consistent for FG-X. 
In Figure.8 and Figure.9, it is observed that as the a/h ratio increases the value of fundamental frequency decreases and with the 
increase in weight fraction of GNP for a particular a/h ratio, the value of fundamental frequency increases. It is also proven from the 
graph that the effect of side-to-thickness ratio increases the change in fundamental frequency. That is, the rate of change in 
fundamental frequency increases when we go to the higher values of a/h values. 

V. CONCLUSIONS 
Analytical formulations and solutions for free vibration characteristics of FG-GNP reinforced composite plates is developed using 
the higher-order shear deformation theory , which account for transverse extensibility and without enforcing zero shear on the top 
and bottom of the FG-GNP plates. Hamilton’s principle is used in deriving the equations of motion. Closed form solutions are 
derived for simply supported boundary conditions using Navier’s method and solving the Eigen value problem. The accuracy and 
efficiency of the present theory have been presented in the results and discussions of the FG-GNP plates. From the results it is 
proven that with the increase in weight fractions, the fundamental frequency increases and also it is observed that as the side to 
thickness ratio increases the fundamental frequency decreases.It is also observed that the natural frequency of FG-X plate are greater 
than that UD plate. Hence, the present results which are obtained using this theory can be used as reference for further studies. From 
the above, it is concluded that the proposed theory is simple and accurate in analyzing the free vibration behavior of FG-GNP 
composite plates. 
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