

INTERNATIONAL JOURNAL FOR RESEARCH

IN APPLIED SCIENCE & ENGINEERING TECHNOLOGY

Month of publication: July 2019 Volume: Issue: VII $\overline{7}$ DOI: http://doi.org/10.22214/ijraset.2019.7127

www.ijraset.com

Call: 008813907089 | E-mail ID: ijraset@gmail.com

Three Connected Domination in a Graph

V. Praba

Assistant Professor, Department of Mathematics, SIGC, Trichy-620002, Tamilnadu, India.

Abstract: Claude Berge [1] introduced the concept of strong stable set S in a graph. These sets are independent and any vertex outside S can have at most one neighbour in S. This concept was generalized by E. Sampathkumar and L. Pushpalatha [5]. A maximal independent set is a minimal dominating set. What type of domination will result from maximal semi-strong sets? This new type of domination which we call us -Three-connected domination is initiated and studied in this paper. Keywords: Strong stable set, Semi-strong set, Three-connected domination. MSC: 05C69.

AMS Mathematics subject Classification (2010):11D09

I. INTRODUCTION

Let $G = (V, E)$ be a simple, finite, undirected graph. A subset *S* of $V(G)$ is called a strong stable set of *G* if $|N[v] \cap S | \le 1$ for v in *V*(*G*). It can be easily seen that such a sets is independent and the distance between any two vertices of *S* greater than equal to three. That is, the strong stable sets is a 2-packing. Generalising this concept, E. Sampathkumar and L. Pushpa Latha [5] introduced the concept of semi-strong sets. A subset *S* of *V*(*G*) is called semi-strong stable if $|N(v) \cap S| \le 1$ for every v in *V*(*G*). A strong stable set is semi-strong stable but the converse is not true. For example, in *C*5, any two consecutive vertices is a semi- strong stable set. If *S* is a semi-strong stable set, then any component of *S* is either *K*¹ or *K*² and the distance between any two points of *S* is not equal to two. A maximal semi-strong stable set gives rise to a new type of domination and this is studied in this paper.

II. THREE-CONNECTED DOMINATING SET

- 1) Definition 2.1: Let S be a subset of $V(G)$. For any $u \in V S$, if there exists $v \in V(G)$, $v \neq u$ such that v is adjacent with u and v is adjacent with a vertex of *S*, (that is, for any $u \in V(G)$ and $w \in S$ such that *uvw* is a path P_3), then *S* is called a 3-connected dominating set of *G*.
- *2) Remark 2.2:* Any 3-connected dominating set *S* of *G* which is semi-strong is a maximal semi- strong set of *G*.
- *3) Theorem* 2.3: Let *S* be a subset of *V*(*G*) such that for any $u \in V S$, there exists *v* and a vertex *w* in *S* such that *uvw* is a path. This property is super hereditary.

Proof

Let *S* be a subset of $V(G)$ satisfying the hypothesis. Let *T* be a proper super set of *S*. Let $u \in V - T$. Then $u \in V - S$. By hypothesis, there exists a vertex *v* and a vertex *w* in *S* such that *uvw* is a path.

- *a) Case 1:* $v \in V T$. In this case, $u, v \in V T$ and $w \in T$ (since $w \in S \subset T$). Moreover *uvw* is a path.
- b) Case 2: $v \in T S$ and $u \in V T$. There exist w in S such that uvw is a path. That is, $u \in V T$, $v \in T$, $w \in T$ and uvw is a path.
- c) Case 3: $v \in S$ and $u \in V T$. There exist $w \in S$ such that uvw is a path. That is, $v \in T$ and $w \in T$ and uvw is a path. In all the three cases, for any $u \in V - T$, there exist $v \in V(G)$, $v \neq u$ and $w \in T$ such that *uvw* is a path. Therefore the property for maximality of a semi-strong set *S* is super hereditary.
- *4) Remark 2.4:* The above property is called a 3-connected dominating property.
- *5) Theorem 2.5:* Any minimal 3-connected dominating set is a maximal semi-strong set.

Proof

Let *S* be a minimal 3-connected dominating set of *G*.

- *a*) *Case 1:* Let $u \in V S$
- *i*) *Subcase 1:* There exists $v \in V S$ and $w \in S$ such that *uvw* is a path. Suppose *u* has at least two neighbours in *S*. Let $x, y \in S$ such that *u* is adjacent with *x* and *y*.
- *I.* Consider $S \{x\}$. For any u_1 in $V (S \{x\})$, $u_1 \neq x$, $u_1 \in V S$. There exists v in $V(G)$, $v \neq u_1$ and w in S such that uvw is a path if $w = x$. Then u_1vw is a triangle and not a path, contradiction. Therefore $w \neq x$. Therefore $w \in S - \{x\}$. Therefore there exists $w \in (S - \{x\})$ such that u_1vw is a path.
- 2. Suppose $u_1 = x$. Then $u \in V S$ such that *u* is adjacent with *x* and adjacent with $y \in (S \{x\})$. That is, u_1 is adjacent with *u* and *u* is adjacent with $y \in (S - \{x\})$. Therefore $S - \{x\}$ is a 3-connected dominating set of *G*, a contradiction (since *S* is minimal).

International Journal for Research in Applied Science & Engineering Technology (IJRASET**)**

 ISSN: 2321-9653; IC Value: 45.98; SJ Impact Factor: 7.177

 Volume 7 Issue VII, July 2019- Available at www.ijraset.com

- *ii*) *Subcase 2:* There exist $v, w \in S$ such that *uvw* is a path.
	- *1.* Suppose *u* has at least two neighbours say *v*, *x* in *S*. Let $u_1 \in V (S \{x\})$.
	- 2. Suppose $u_1 \neq x$. Therefore $u_1 \in V S$. Hence there exists v in $V(G)$ and w in S such that u_1vw is a path. If $w = x$, then u_1vx is a triangle, a contradiction. Therefore $w = x$. Therefore $w \in S - \{x\}$ and *uvw* is a path.
	- *3.* Suppose $u_1 = x$. In this case u_1 is adjacent with $u \in V S$ and u is adjacent with $v \in (S \{x\})$. Also u_1uv is a path. Therefore $S - \{x\}$ is a 3-connected dominating set, a contradiction since *S* is minimal. Therefore $|N(u) \cap S| \neq 1$.
	- b) Case 2: $u \in S$, Suppose u has at least two neighbours say x, y in S. Consider $S \{x\}$. Then $x \in V (S \{x\})$. x is adjacent with $u \in V(G)$ and *u* is adjacent with $y \in S - \{x\}$. Therefore *xuy* is a path. Therefore $S - \{x\}$ is a 3-connected dominating set of $V(G)$, a contradiction. Therefore for any *u* in *S*, $|N(u) \cap S| \le 1$. Hence *S* is a semi-strong set of *G*. Since *S* is a 3-connected dominating set of *G* and since *S* is semi-strong set of *G*, we get that *S* is a maximal semi- strong set of *G*.

6) Theorem 2.6: Any maximal semi-strong set of *G* is a minimal 3-connected dominating a set of *G*.

Proof

Suppose *S* is a maximal semi-strong set of *G*. Then *S* is a 3-connected dominating set of *G*. Suppose *S* is not a minimal 3-connected dominating set of *G*. Therefore there exists a proper subset *T* of *S* such that *T* is a 3-connected dominating set of *G*. Since *S* is semistrong, *T* is semi-strong. Therefore *T* is a maximal semi-strong set of *G* which satisfies 3-connected property. Therefore *T* is a maximal semi-strong set of *G*, a contradiction, since *S* is a proper superset of *T* and *S* is a semi-strong set of *G*. Therefore *S* is a minimal 3-connected dominating set of *G*.

- *7) Definition 2.7:* The minimum (maximum) cardinality of a minimal 3-connected dominating set of *G* is called 3-connected domination number of *G* (upper 3-connected domination number of *G*) and is denoted by γ_{3-c} (*G*)(Γ_{3-c} (*G*)).
- *8) Remark 2.8:* Let *S* be a minimum cardinality of a maximal semi-strong set of *G*. Then *S* is a minimal 3-connected dominating set of *G*. Therefore $\gamma_{3-\mathcal{C}}(G) \leq |S| = lss(G) \leq ss(G)$.
- *9) Remark 2.9:* Let *S* be a maximum semi-strong set of *G*. Therefore *S* is a minimal 3-connected dominating set of *G*. Therefore $ss(G) = |S| \leq \Gamma_{3-\mathcal{C}}(G)$. Therefore $\gamma_{3-\mathcal{C}}(G) \leq lss(G) \leq ss(G) \leq \Gamma_{3-\mathcal{C}}(G)$.
- *10) Illustration 2.10:* Let *G* be the graph given in Figure 1:

In this graph, $S_1 = \{u_1, u_2, u_5, u_7, u_8, u_{11}\}$ is a ss-set of G. Hence $ss(G) = 6$. $S_2 = \{u_3, u_6, u_7, u_{11}\}$ is a maximal semi-strong set of G of minimum cardinality. Therefore $lss(G) = 4$. $S_3 = \{u_3, u_6, u_9\}$ is a minimum 3-connected dominating set of *G*. Hence γ_{3-C} (*G*) = 3 \leq *lss*(*G*) = 4. That is, γ_{3-C} (*G*) < *lss*(*G*).

Figure 1: An example graph *G* for $\gamma_{3-\mathcal{C}}(G) < lss(G)$

11) Theorem 2.11: Let *S* be a 3-connected dominating set of *G*. *S* is minimal if and only if for any *w* in *S* there exists a vertex *u* in *V* – *S* such that any 3-connected path from *u* to *S* ends in *w*.

Proof

Let *S* be a minimal 3-connected dominating set of *G*. Let $w \in S$. Then $S - \{w\}$ is not a 3-connected dominating set of *G*. Therefore there exists *u* in $V - (S - \{w\})$ such that there is no 3-connected path uv_1w_1 where $v_1 \in V(G)$ and $w_1 \in S - \{x\}$. Since *S* is a 3connected dominating set of *G*, there exists $v_1 \in V(G)$ and w_1 in *S* such that uv_1w_1 is path. If $w_1 \neq w$, then there exists a 3-connecteed path uv_1w_1 from *u* to $S - \{w\}$, a contradiction. Therefore $w_1 = w$. Therefore any 3-connected path from *u* to *S* is of the form *uvw*. That is, there exists u in $V - S$ such that any 3-connected path from u to S ends in w .

Conversely, let *S* be a 3-connected dominating set of *G* such that for any *w* in *S*, there exists *u* in $V - S$ such that 3-connected path from *u* to *S* ends in *w*.

1) Claim: S – {*w*} is not a 3-connected dominating set for any *w* in *S*.

Since *S* is a 3-connected dominating set of *G* satisfying the above property, there exists *u* in $V - S$ such that any 3-connected path from *u* to *S* must end in *w*. Therefore $u \in V - (S - \{w\})$, $u \neq v$. Suppose there exists a 3-connected path from *u* to $S - \{w\}$ say uvw_1 , where $w_1 \in S - \{w\}$. Then $w_1 \in S$ and uvw_1 is a path ending in w_1 in *S*, $w_1 \neq w$, a contradiction. Therefore $S - \{w\}$ is not a 3connected dominating set of *G*. Hence the claim.

Therefore *S* is a minimal 3-connected dominating set of *G*.

III. THREE-CONNECTED PATH IRREDUNDANCE

- *1) Definition 3.1:* Let *S* be a subset of *V*(*G*) such that for any *w* in *S*, there exists a *u* in *V S* such that any 3-connected path from *u* to *S* ends in *w*. Then *S* is called a 3-connected path irredundant set of *G*.
- *2) Theorem 3.2:* The above property of a set *S* is hereditary.

Proof

Let *S* be a subset of *V*(*G*) satisfying the above property. Let *T* be a proper subset of *S*.

Let $w \in T$. Then $w \in S$. Therefore there exist $u \in V - S$ such that any 3-connected path from *u* to *S* ends in *w*. Therefore $u \in V - T$. Suppose there exists a 3-connected path such that $w_1 \in T$,

 $w \neq w_1$. Then $w_1 \in S$. Therefore there exists a 3-connected path from *u* to w_1 in *S*, a contradiction. Therefore $w_1 = w$. Hence *T* is a subset of *V*(*G*) satisfying the above property. Hence the theorem.

- *3) Definition 3.3:* Let *S* be a 3-connected path set of *G*. The minimum (maximum) cardinality of a maximal 3-connected path irredundant set of *G* is called 3-connected path irredundant number of *G* (upper 3-connected path irredundant number of *G*) is denoted by $ir_{3-C}(G)$ ($IR_{3-C}(G)$).
- *4) Remark 3.4:* Any 3-consecutive dominating set of *G* is minimal if and only if it a 3-consecutive path irredundant set of *G*.

5) Theorem 3.5: Every minimal 3-connected dominating set of *G* is a maximal 3-connected path irredundant set of *G*.

Proof

Let *S* be a minimal 3-connected dominating set of *G*. Then *S* satisfies the property that for every *w* in *S*, there exists *u* in $V - S$ such that any 3-connected path from *u* to *S* ends in *w*. Therefore *S* is a 3-connected path irredundant set of *G*. Suppose *S* is not a maximal 3 connected path irredundant set of *G*.

Figure 2: An example graph *G* for which $ir_{3-c}(G) < \gamma_{3-c}(G)$

International Journal for Research in Applied Science & Engineering Technology (IJRASET**)**

 ISSN: 2321-9653; IC Value: 45.98; SJ Impact Factor: 7.177 Volume 7 Issue VII, July 2019- Available at www.ijraset.com

Since 3-connected path irredundant is hereditary, it is enough to consider 1-maximality. Since *S* is not maximal, there exists *u* in $(V - S)$ such that S ∪ {*u*} is 3-connected path irredundant set of *G*. Therefore for any *x* in *S* ∪ {*u*}, there exist *y* in *V* – (*S* ∪ {*u*}) such that any 3-connected path from *y* in $S \cup \{u\}$ ends in *x*. Take $x = u$. Then there exists *y* in $V - (S \cup \{u\})$ such that any 3-connected path from *y* in *S* ∪ {*u*} ends in *u*. That is, there exists *y* in *V* – *S* such that any 3-connected path from *y* to *S* does not end in any vertex of *S*, that is, *S* does not satisfy 3-connected path irredundant condition, a contradiction. Therefore *S* is a maximal 3-connected path irredundant set of *G*.

6) *Remark 3.6:* For any graph *G*, $ir_{3-c}(G) \leq \gamma_{3-c}(G) \leq lss(G) \leq ss(G) \leq \Gamma_{3-c}(G) \leq IR_{3-c}(G)$.

7) Remark 3.7: In the following example, $ir_{3-C}(G) < \gamma_{3-C}(G)$. Let *G* be the graph given in Figure 2. The set

 $S_1 = \{u_2, u_4, u_6\}$ is a minimum 3-connected dominating set of *G*. Therefore γ_{3-c} (*G*) = 3.

The set $S_2 = \{u_3, u_5\}$ is maximum 3-connected path irredundant set of *G*. $ir_{3-c}(G) = 2$.

Therefore $ir_{3-C}(G) < \gamma_{3-C}(G)$

REFERENCES

- [1] C. Berge, Graphs and Hyper graphs, North Holland, Amsterdam, 1973.
- [2] F. Harary, Graph Theory, Addison-Wesley Reading, MA (1969).
- [3] T.W. Haynes, S.T. Hedetniemi and P.J. Slater, Fundamentals of Domination in Graphs, Marcel Dekker Inc., 1998.
- [4] T.W. Haynes, S.T. Hedetniemi and P.J. Slater, Domination in Graphs: Advanced topics, Marcel Dekker Inc., 1998.
- [5] E. Sampathkumar and L. Pushpa Latha, Semi-Strong Chromatic Number of a Graph, Indian Journal of Pure and Applied Mathematics, 26(1): 35-40, 1995.

45.98

IMPACT FACTOR: 7.129

INTERNATIONAL JOURNAL FOR RESEARCH

IN APPLIED SCIENCE & ENGINEERING TECHNOLOGY

Call: 08813907089 (24*7 Support on Whatsapp)