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Abstract: Claude Berge [1] introduced the concept of strong stable set S in a graph. These sets are independent and any vertex 
outside S can have at most one neighbour in S. This concept was generalized by E. Sampathkumar and L. Pushpalatha [5]. A 
maximal independent set is a minimal  dominating set. What type of domination will result from maximal semi-strong sets? This 
new type of domination which we call us -Three-connected domination is initiated and studied in this paper. 
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I. INTRODUCTION 
Let G = (V, E) be a simple, finite, undirected graph. A subset S of V(G) is called a strong stable set of G if | N[v] ∩ S | ≤ 1 for v in 
V(G). It can be easily seen that such a sets is independent and the distance between any two vertices of S greater than equal to three. 
That is, the strong stable sets is a 2-packing. Generalising  this concept, E. Sampathkumar and L. Pushpa Latha [5] introduced the 
concept of semi-strong sets. A subset S of V(G) is called semi-strong stable if | N(v) ∩ S | ≤ 1 for every v in V(G). A strong stable set 
is semi-strong stable but the converse is not true. For example, in C5, any two consecutive vertices is a semi- strong stable set. If S is 
a semi-strong stable set, then any component of S is either K1 or K2 and the distance between any two points of S is not equal to two. 
A maximal semi-strong stable set gives rise to a new type of domination and this is studied in this paper. 

II. THREE-CONNECTED DOMINATING SET 
1) Definition 2.1: Let S be a subset of V(G). For any u ∈ V – S, if there exists v ∈ V(G), v ≠ u such that v is adjacent with u and v is 

adjacent with a vertex of S, (that is, for any u ∈ V(G) and w ∈ S such that uvw is a path P3), then S is called a 3-connected 
dominating set of G. 

2) Remark 2.2: Any 3-connected dominating set S of G which is semi-strong is a maximal semi- strong set of G. 
3) Theorem 2.3: Let S be a subset of V(G) such that for any u ∈ V – S, there exists v and a vertex w in S such that uvw is a path. 

This property is super hereditary. 
Proof 
Let S be a subset of V(G) satisfying the hypothesis. Let T be a proper super set of S. Let u ∈ V – T. Then u ∈ V – S. By hypothesis, 
there exists a vertex v and a vertex w in S such that uvw is a path. 
a) Case 1: v ∈ V – T. In this case, u, v ∈ V – T and w ∈ T (since w ∈ S ⊂ T). Moreover uvw is a path. 
b) Case 2: v ∈ T – S and u ∈ V – T. There exist w in S such that uvw is a path. That is, u ∈ V – T, v ∈ T, w ∈ T and uvw is a path. 
c) Case 3: v ∈ S and u ∈ V – T. There exist w ∈ S such that uvw is a path. That is, v ∈ T and w ∈ T and uvw is a path. In all the 

three cases, for any u ∈ V – T, there exist v ∈ V(G), v ≠ u and w ∈ T such that uvw is a path. Therefore the property for 
maximality of a semi-strong set S is super hereditary. 

4) Remark 2.4: The above property is called a 3-connected dominating property. 
5) Theorem 2.5: Any minimal 3-connected dominating set is a maximal semi-strong set. 
Proof 
Let S be a minimal 3-connected dominating set of G. 
a) Case 1: Let u ∈ V – S 

i) Subcase 1: There exists v ∈ V – S and w ∈ S such that uvw is a path. Suppose u has at least two neighbours in S. Let x, y ∈ S 
such that u is adjacent with x and y. 

1. Consider S – {x}. For any u1 in V – (S – {x}), u1 ≠ x, u1 ∈ V – S. There exists v in V(G), v ≠ u1 and w in S such that uvw is 
a path if w = x. Then u1vw is a triangle and not a path, contradiction. Therefore w ≠ x. Therefore w ∈ S – {x}. Therefore there 
exists w ∈ (S – {x}) such that u1vw is a path. 

2. Suppose u1 = x. Then u  ∈ V – S such that u is adjacent with x and adjacent with y ∈ (S – {x}). That is, u1 is adjacent with u  and  
u is adjacent  with y ∈ (S  – {x}). Therefore S – {x} is a 3-connected dominating set of G, a contradiction (since S is minimal). 
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ii) Subcase 2: There exist v, w ∈ S such that uvw is a path. 
1. Suppose u has at least two neighbours say v, x in S. Let u1 ∈ V – (S – {x}). 
2. Suppose u1 ≠ x. Therefore u1 ∈ V – S. Hence there exists v in V(G) and w in S such that u1vw is a path. If w = x, then u1vx is a 

triangle, a contradiction. Therefore w = x. Therefore w ∈ S – {x} and uvw is a path. 
3. Suppose u1 = x. In  this case u1 is adjacent with u ∈ V – S and u is adjacent with          v ∈ (S – {x}). Also u1uv is a path. 

Therefore S – {x} is a 3-connected dominating set, a contradiction since S is minimal. Therefore | N(u) ∩ S | ≠ 1. 
b) Case 2: u ∈ S, Suppose u has at least two neighbours  say x, y in S. Consider S – {x}. Then x ∈ V – (S – {x}). x is adjacent with u ∈ V(G) 

and u is adjacent with y ∈ S – {x}. Therefore xuy is a path. Therefore S – {x} is a 3-connected dominating set of V(G), a 
contradiction. Therefore for any u in S, | N(u) ∩ S | ≤  1. Hence S is a semi-strong set of G. Since S is a 3-connected dominating 
set of G and since S is semi-strong set of G, we get that S is a maximal semi- strong set of G. 

6) Theorem 2.6: Any maximal semi-strong set of G is a minimal 3-connected dominating a set of G. 
Proof 
Suppose S is a maximal semi-strong set of G. Then S is a 3-connected dominating set of G. Suppose S is not a minimal 3-connected 
dominating set of G. Therefore there exists a proper subset T of S such that T is a 3-connected dominating set of G. Since S is semi-
strong, T is semi-strong. Therefore T is a maximal semi-strong set of G which satisfies 3-connected property. Therefore T is a 
maximal semi-strong set of G, a contradiction, since S is a proper superset of T and S is a semi-strong set of G. Therefore S is a 
minimal 3-connected dominating set of G. 
7) Definition 2.7: The minimum (maximum) cardinality of a minimal 3-connected dominating set of G is called 3-connected 

domination number of G (upper 3-connected domination number of G) and is denoted by ࢽି (G) (ࢣି(G)). 
8) Remark 2.8: Let S be a minimum cardinality of a maximal semi-strong set of G. Then S is a minimal 3-connected dominating 

set of G. Therefore ࢽି (G) ≤ | S | = lss(G) ≤ ss(G). 
9) Remark 2.9: Let S be a maximum semi-strong set of G. Therefore S is a minimal 3-connected dominating set of G. Therefore 

ss(G) = | S | ≤ ࢣି(G). Therefore ࢽି(G) ≤ lss(G) ≤ ss(G) ≤ ࢣି(G). 
10) Illustration 2.10: Let G be the graph given in Figure 1: 
In this graph, S1 = {u1, u2, u5, u7, u8, u11} is a ss-set of G. Hence ss(G) = 6. S2 = {u3, u6, u7, u11} is a maximal semi-strong set of G of 
minimum cardinality. Therefore lss(G) = 4.      S3 = {u3, u6, u9} is a minimum 3-connected dominating set of G. 
Hence ߛଷି( (G) = 3 ≤ lss(G) = 4. That is, ߛଷି (G) < lss(G). 

 
Figure 1: An example graph G for ࢽି(G) < lss(G) 
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11) Theorem 2.11: Let S be a 3-connected dominating set of G. S is minimal if and only if for any w in S there exists a vertex u in V 
– S such that any 3-connected path from u to S ends in w. 

Proof 
Let S be a minimal 3-connected dominating set of G. Let w ∈ S. Then S – {w} is not a 3-connected dominating set of G. Therefore 
there exists u in V – (S – {w}) such that there is no 3-connected path uv1w1 where v1 ∈ V(G) and w1 ∈ S – {x}. Since S is a 3-
connected dominating set of G, there exists v1 ∈ V(G) and w1 in S such that uv1w1 is path. If w1 ≠ w, then there exists a 3-connecteed 
path uv1w1 from u to S – {w}, a contradiction. Therefore w1 = w. Therefore any 3-connected path from u to S is of the form uvw. 
That is, there exists u in V – S such that any 3-connected path from u to S ends in w. 
Conversely, let S be a 3-connected dominating set of G such that for any w in S, there exists u in V – S such that 3-connected path 
from u to S ends in w. 
1) Claim: S – {w} is not a 3-connected dominating set for any w in S. 
Since S is a 3-connected dominating set of G satisfying the above property, there exists u in V – S such that any 3-connected path 
from u to S must end in w. Therefore             u ∈ V – (S – {w}), u ≠ v. Suppose there exists a 3-connected path from u to S – {w} say 
uvw1, where w1 ∈ S – {w}. Then w1 ∈ S and uvw1 is a path ending in w1 in S, w1 ≠ w, a contradiction. Therefore S – {w} is not a 3-
connected dominating set of G. Hence the claim. 
Therefore S is a minimal 3-connected dominating set of G. 
 

III. THREE-CONNECTED PATH IRREDUNDANCE 
1) Definition 3.1: Let S be a subset of V(G) such that for any w in S, there exists a u in V – S such that any 3-connected path from u 

to S ends in w. Then S is called a 3-connected path irredundant set of G. 
2) Theorem 3.2: The above property of a set S is hereditary. 

Proof 
Let S be a subset of V(G) satisfying the above property. Let T be a proper subset of S. 
Let w ∈ T. Then w ∈ S. Therefore there exist u ∈ V – S such that any 3-connected path from u to S ends in w. Therefore u ∈ V – T. 
Suppose there exists a 3-connected path such that w1 ∈ T, 
 w  ≠  w1.  Then  w1  ∈ S.  Therefore  there  exists  a  3-connected  path  from  u  to  w1  in  S,  a contradiction. Therefore w1 = w. 
Hence T is a subset of V(G) satisfying the above property. Hence the theorem. 
3) Definition 3.3: Let S be a 3-connected path set of G. The minimum (maximum) cardinality of a maximal 3-connected path 

irredundant set of G is called 3-connected path irredundant number of G (upper 3-connected path irredundant number of G) is 
denoted by  ir3-C(G) (IR3-C(G)). 

4) Remark 3.4: Any 3-consecutive dominating set of G is minimal if and only if it a 3-consecutive path irredundant set of G. 
5) Theorem 3.5: Every minimal 3-connected dominating set of G is a maximal 3-connected path irredundant set of G. 
Proof 
Let S be a minimal 3-connected dominating set of G. Then S satisfies the property that for every w in S, there exists u in V – S such 
that any 3-connected path from u to S ends in w. Therefore S is a 3-connected path irredundant set of G. Suppose S is not a maximal 3-
connected path irredundant set of G. 

 
Figure 2: An example graph G for which ir3-C(G) <  ࢽି(G) 
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Since 3-connected path irredundant is hereditary, it is enough to consider 1-maximality. Since S is not maximal, there exists u in (V – S) 
such that S ∪  is 3-connected path irredundant set of G. Therefore for any x in S ∪ {u}, there exist y in  V – (S ∪ {u}) such that {ݑ}
any 3-connected path from y in S ∪ {u} ends in x. Take x = u. Then there exists y in V – (S ∪ {u}) such that any 3-connected path from y 
in S ∪ {u} ends in u. That is, there exists y in V – S such that any  3-connected path from y to S does not end in any vertex of S, that 
is, S does not satisfy 3-connected  path irredundant condition, a contradiction. Therefore S is a maximal 3-connected path 
irredundant  set of G. 
6) Remark 3.6: For any graph G, ir3-C(G) ≤ ࢽି(G) ≤ lss(G) ≤ ss(G) ≤  ࢣି(G) ≤ IR3-C(G). 
7) Remark 3.7: In the following example, ir3-C(G) < ࢽି (G)  . Let G be the graph given in Figure 2. The set 
 S1 = {u2, u4, u6} is a minimum 3-connected dominating set of G. Therefore ߛଷି (G)  = 3.  
The set S2 = {u3, u5} is maximum 3-connected path irredundant set of G. ir3-C(G) = 2.  
Therefore ir3-C(G) < ߛଷି (G) 
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