

3 V May 2015

www.ijraset.com Volume 3 Issue V, May 2015
IC Value: 13.98 ISSN: 2321-9653

International Journal for Research in Applied Science & Engineering
Technology (IJRASET)

©IJRASET 2015: All Rights are Reserved
715

Fast Base-10 Multiplication
Using XS-3 and ODDS BCD codes

Ch.Balaram Murthy1, A.Srinivas2, T.Ragini3, J.Umesh4
 1,2,3,4Department of Electronics and communication Engineering,

 1,2Jyothishmathi Institute of Technological Sciences, 3,4Nigama college of Engineering,karimnagar

Abstract—We present the algorithm and architecture of a BCD parallel multiplier that exploits some properties of two different
redundant BCD codes to speed up its computation: the redundant BCD excess-3 code (XS-3), and the overloaded BCD
representation (ODDS). In addition, new techniques are developed to reduce significantly the latency and area of previous
representative high performance implementations. Partial products are generated in parallel using a signed-digit base-10
recoding of the BCD multiplier with the digit set [-5,5], and a set of positive multiplicand multiples (0X, 1X, 2X, 3X, 4X, 5X)
coded in XS-3.
Keywords— Parallel multiplication, decimal hardware, overloaded BCD representation, redundant excess-3 code, redundant
arithmetic

I. INTRODUCTION

DECIMAL fixed-point and floating-point formats are important in financial, commercial, and user-oriented computing, where
conversion and rounding errors that are inherent to floating-point binary representations cannot be tolerated [3]. The new IEEE 754-
2008 Standard for Floating Point Arithmetic which contains a format and specification for decimal floating-point (DFP) arithmetic
[1], has encouraged a significant amount of research in decimal hardware [6] Since area and power dissipation are critical design
factors in state-of-the-art DFPUs, multiplication and division are performed iteratively by means of digit-by-digit algorithms [4], [5],
and therefore they present low performance.
 Moreover, the aggressive cycle time of these processors puts an additional constraint on the use of parallel techniques [6], for
reducing the latency of DFP multiplication in high-performance DFPUs. Thus, efficient algorithms for accelerating DFP
multiplication should result in regular VLSI layouts that allow an aggressive pipelining. Hardware implementations normally use
BCD instead of binary to manipulate decimal fixed-point operands and integer significant of DFP numbers for easy conversion
between machine and user representations BCD encodes a number X in decimal (non-redundant base-10) format, with each decimal
digit Xi € [0, 9] represented in a 4-bit binary number system. However, BCD is less efficient for encoding integers than binary,
since codes 10 to 15 are unused. BCD carry-save and signed-digit base-10 arithmetic offer improvements in performance with
respect to non redundant BCD. However, the resultant VLSI implementations in current technologies of multi operand adder trees
may result in more irregular layouts than binary carry-save adders (CSA) and compressor trees. The overloaded BCD (or ODDS—
overloaded decimal digit set) representation was proposed to improve decimal multi operand addition and sequential and parallel
[12], [13] decimal multiplications. In this code, each 4-bit binary value represents a redundant base-10 digit Xi € [0, 15]. The ODDS
presents interesting properties for a fast and efficient hardware implementation of decimal arithmetic:(1) it is a redundant decimal
representation so that it allows carry-free generation of both simple and complex decimal multiples (2X, 3X, 4X, 5X, 6X,. . .) and
addition,(2) since digits are represented in the binary number system, digit operations can be performed with binary arithmetic, and
(3) unlike BCD, there is no need to implement additional hardware to correct invalid 4-bit combinations. A disadvantage with
respect to signed-digit and self-complementing codes, is a slightly more complex implementation of 9’s complement operation for
negation of operands and subtraction We propose the use of a general redundant BCD arithmetic (that includes the ODDS, XS-3 and
BCD representations) to accelerate parallel BCD multiplication in two ways:
 Partial product generation (PPG). By generating positive multiplicand multiples coded in XS-3 in a carry free form. An advantage
of the XS-3 representation over non-redundant decimal codes (BCD and 4221/5211 [3]) is that all the interesting multiples for
decimal partial product generation, including the 3X multiple, can be implemented in constant time with an equivalent delay of
about three XOR gate levels. Moreover, since XS-3 is a self-complementing code, the 9’s complement of a positive multiple can be
obtained by just inverting its bits as in binary.
 Partial product reduction (PPR). By performing the reduction of partial products coded in ODDS via binary carry-save arithmetic.

www.ijraset.com Volume 3 Issue V, May 2015
IC Value: 13.98 ISSN: 2321-9653

International Journal for Research in Applied Science & Engineering
Technology (IJRASET)

©IJRASET 2015: All Rights are Reserved
716

Partial products can be recoded from the XS-3 representation to the ODDS representation by just adding a constant factor into the
partial product reduction tree. The resultant partial product reduction tree is implemented using regular structures of binary carry-
save adders or compressors. The 4-bit binary encoding of ODDS operands allows a more efficient mapping of decimal algorithms
into binary techniques. By contrast, signed-digit base-10 and BCD carry-save redundant representations require specific base-10
digit adders

II. REDUNDANT BCD REPRESENTATIONS

The proposed decimal multiplier uses internally a redundant BCD arithmetic to speed up and simplify the implementation. This
arithmetic deals with base-10 ten’s complement integers of the form:
 Z= -Sz x 10d + x Zi x 10d (1)
 where d is the number of digits, Sz is the sign bit, and Zi [l-e, m-e] is the ith digit 0 ≤l ≤ e; 9 + e ≤ m ≤ 24- 1(= 15). Parameter e
is the excess of the representation and usually takes values 0 (non excess), 3 or 6. The redundancy index is defined as = m - l +
1 - r [12], being r = 10.
The value of Zi depends on the decimal representation parameterized by (l, m, e). We use a 4-bit encoding to represent digits Zi.
This allows us to manage decimal operands in different representations with the same arithmetic, such as BCD (Zi [0, 9]; e = 0, l
= 0,m = 9, = 0), BCD excess-3 (Zi [0, 9], e = 3, l = 3,m = 12, = 0), BCD excess-6 (Zi [0, 9], e = 6, l = 6, m = 15; = 0),
and redundant representations (> 0), such as the ODDS representation (Zi [0, 15], e = 0, l = 0, m = 15, =6), or the XS-3
representation (Zi [-3,12], e = 3, l = 0,m =15, =6).
 On the other hand, the binary value of the 4-bit vector representation of Zi is given by

 [Zi] = x Zi , j x 2j , (2)

Zi , j being the jth bit of the ith digit. Therefore, the value of digit Zi can be obtained by subtracting the excess e of the representation
from the binary value of its 4-bit encoding, that is, Zi= [Zi] – e
This binary encoding simplifies the hardware implementation of decimal arithmetic units, since we can make use of state-of-the-art
binary logic and binary arithmetic techniques to implement digit operations. In particular, the ODDS representation presents
interesting properties (redundancy and binary encoding of its digit set) for a fast and efficient implementation of multi operand
addition. Moreover, conversions from BCD to the ODDS representation are straightforward, since the digit set of BCD is a subset of
the ODDS representation.
We use a SD base-10 recoding of the BCD multiplier [3], which requires to compute a set of decimal multiples ({-5X, . . . , 0X, . . . ,
5X}) of the BCD multiplicand. The main issue is to perform the x3 multiple without long carry-propagation. For input digits of the
multiplicand in conventional BCD (i.e., in the range [0, 9], e = 0, = 0), the multiplication by 3 leads to a maximum decimal carry
to the next position of 2 and to a maximum value of the interim digit (the result digit before adding the carry from the lower position)
of 9. Therefore the resultant maximum digit (after adding the decimal carry and the interim digit) is 11. Thus, the range of the digits
after the x3 multiplication is in the range [0, 11]. Therefore the redundant BCD representations can host the resultant digits with just
one decimal carry propagation.
An important issue for this representation is the ten’s complement operation. Since after the recoding of the multiplier digits,
negative multiplication digits may result, it is necessary to negate (ten’s complement) the multiplicand to obtain the negative partial
products. This operation is usually done by computing the nine’s complement of the multiplicand and adding a one in the proper
place on the digit array.
 The nine’s complement of a positive decimal operand is given by

 -10d + x (9 - Zi) x10i (3)

The implementation of (9 – Zi) leads to a complex implementation, since the Zi digits of the multiples generated may take values
higher than 9. A simple implementation is obtained by observing that the excess-3 of the nine’s complement of an operand is equal
to the bit complement of the operand coded in excess-3.

www.ijraset.com Volume 3 Issue V, May 2015
IC Value: 13.98 ISSN: 2321-9653

International Journal for Research in Applied Science & Engineering
Technology (IJRASET)

©IJRASET 2015: All Rights are Reserved
717

TABLE 1
Nine’s Complement for the XS-3 Representation

In Table 1 we show how the nine’s complement can be performed by simply inverting the bits of a digit Zi coded in XS-3. At the
decimal digit level, this is due to the fact that:

 (9 - Zi) + 3 = 15 –(Zi + 3) (4)

for the ranges Zi [-3, 12] (Zi [0, 15]). Therefore to have a simple negation for partial product generation we produce the
decimal multiples in an excess-3 code. The negation is performed by simple bit inversion, that corresponds to the excess-3 of the
nine’s complement of the multiple. Moreover, to simplify the implementation we combine the multiple generation stage and the
digit increment by 3(to produce the excess-3) into a single module by using the XS-3 code
 In summary, the main reasons for using the redundant XS-3 code are: (1) to avoid long carry-propagations in the generation of
decimal positive multiplicand multiples, (2) to obtain the negative multiples from the corresponding positive ones easily, (3) simple
conversion of the partial products generated in XS-3 to the ODDS representation for efficient partial product reduction

III. HIGH-LEVEL ARCHITECTURE

The high-level block diagram of the proposed parallel architecture for dxd-digit BCD decimal integer and fixed-point multiplication
is shown in Fig. 1. This architecture accepts conventional (non-redundant) BCD inputs X, Y , generates redundant BCD partial
products PP, and computes the BCD product P =X * Y . It consists of the following three stages1: (1) parallel generation of partial
products coded in XS-3, including generation of multiplicand multiples and recoding of the multiplier operand, (2) recoding of
partial products from XS-3 to the ODDS representation and subsequent reduction, and (3) final conversion to a non-redundant 2d-
digit BCD product.

www.ijraset.com Volume 3 Issue V, May 2015
IC Value: 13.98 ISSN: 2321-9653

International Journal for Research in Applied Science & Engineering
Technology (IJRASET)

©IJRASET 2015: All Rights are Reserved
718

Fig.1. Combinational SD Base -10 architecture.

Stage 1) Decimal partial product generation. A SD base-10 recoding of the BCD multiplier has been used. This recoding produces a
reduced number of partial products that leads to a significant reduction in the overall multiplier area Therefore, the recoding of the
d-digit multiplier Y into SD base-10 digits Ybd-1; . . . ; Yb0, produces d partial products PP[d – 1], . . . ,PP[0], one per digit; note that
each Ybk recoded digit is represented in a 6–bit hot-one Code to be used as control input of the multiplexers for selecting the proper
multiplicand multiple, {-5X, . . . ,-1X, 0X, 1X, . . . 5X}. An additional partial product PP[d] is produced by the most significant
multiplier digit after the recoding, so that the total number of partial Products generated is d + 1.
Stage 2) Decimal partial product reduction. In this stage, the array of d + 1 ODDS partial products are reduced to two 2d-digit words
(A, B). Our proposal relies on a binary carry save adder tree to perform carry-free additions of the decimal partial products. The
array of d + 1 ODDS partial products can be viewed as adjacent digit columns of height h ≤ d + 1. Since ODDS digits are encoded
in binary, the rules for binary arithmetic apply within the digit bounds, and only carries generated between base-10 digits (4-bit
columns) contribute to the decimal correction of the binary sum. That is, if a carry out is produced as a result of a 4-bit (modulo 16)
binary addition; the binary sum must be incremented by 6 at the appropriate position to obtain the correct decimal sum (modulo 10
additions).
Stage 3) Conversion to (non-redundant) BCD. We consider the use of a BCD carry-propagate adder [9] to perform the final
conversion to a non-redundant BCD product P = A+ B. The proposed architecture is a 2d-digit hybrid parallel prefix/carry-select
adder, the BCD Quaternary Tree adder The sum of input digits Ai , Bi at each position i has to be in the range [0,18] so that at most
one decimal carry is propagated to the next position i + 1 [2].Furthermore, to generate the correct decimal carry, the BCD addition
algorithm implemented requires Ai + Bi to be obtained in excess-6. Several choices are possible. We opt for representing operand A
in BCD excess-6 (Ai [0, 9], [Ai] = Ai + e, e = 6), and B coded in BCD (Bi [0, 9], e = 0).

IV. DECIMAL PARTIAL PRODUCT GENERATION

The partial product generation stage comprises the recoding of the multiplier to a SD base-10 representation, the calculation of the
multiplicand multiples in XS-3 code and the generation of the ODDS partial products. The SD base-10 encoding produces d SD
base-10 digits Ybk [-5, 5], with k = 0, . . . ,d -1, Yd-1 being the most significant digit (MSD) of the multiplier [9]. Each digit Ybk is
represented with a 5-bit hot-one code (Y1k, Y2k, Y3k, Y4k, Y5k) to select the appropriate multiple {1X, . . . ,5X} with a 5:1 mux and
a sign bit Ysk that controls the negation of the selected multiple. The negative multiples are obtained by ten’s complementing the
positive ones. This is equivalent to taking the nine’s complement of the positive multiple and then adding1. The nine’s complement

www.ijraset.com Volume 3 Issue V, May 2015
IC Value: 13.98 ISSN: 2321-9653

International Journal for Research in Applied Science & Engineering
Technology (IJRASET)

©IJRASET 2015: All Rights are Reserved
719

can be obtained simply by bit inversion.

Fig. 2. SD base-10 generation of a partial product digit.

This needs the positive multiplicand multiples to be coded in XS-3, with digits in [-3, 12].The d least significant partial products PP
[d – 1], . . . ,PP [0] are generated from digits Ybk by using a set of 5:1 muxes, as shown in Fig. 2. The xor gates at the output of the
mux invert the multiplicand multiple, to obtain its 9’s complement, if the SD base-10 digit is negative (Ysk =1).

A. Generation of the Multiplicand Multiples
 We denote by NX {1X, 2X, 3X, 4X, 5X}, the set of multiplicand multiples coded in the XS-3 representation, with digits NXi
[-3, 12], being [NXi] = NXi + 3 [0, 15] the corresponding value of the 4-bit binary encoding of NXi given by Equation (2).
Fig. 2 shows the high-level block diagram of the multiples generation with just one carry propagation. This is performed in two
steps:
1) digit recoding of the BCD multiplicand digits Xi into a decimal carry 0 ≤ Ti ≤Tmax and a digit -3 ≤ Di ≤12 - Tmax, such as

 Di + 10 x Ti = (N x Xi + 3; (5)
 being Tmax the maximum possible value for the decimal carry.

2) The decimal carries transferred between adjacent digits are assimilated obtaining the correct 4-bit representation of XS-
 3 digits NXi, that is

 [NXi] = Di + Ti-1 ; [NXi] [0, 15] (NXi [-3,12]) (6)

B. Most-Significant Digit Encoding
The MSD of each PP[k], PPd[k], is directly obtained in the ODDS representation. Note that these digits store the carries generated in
the computation of the multiplicand multiples
and the sign bit of the partial product. For positive partial products we have

www.ijraset.com Volume 3 Issue V, May 2015
IC Value: 13.98 ISSN: 2321-9653

International Journal for Research in Applied Science & Engineering
Technology (IJRASET)

©IJRASET 2015: All Rights are Reserved
720

 PPd[k] = Td-1 (7)

 with Td-1 {0,1,2,3,4} (see Table 2). For negative partial products, the ten’s complement operation leads to

 PPd[k] = -10 + (9 –Td-1) = -1 –Td-1 (8)

 with Td-1 {0,1,2,3,4}. Therefore the two cases can be expressed as

 PPd[k] = -Ysk + (-1)Ys

k Td-1 (9)
Since we need to encode PPd[k] in the ODDS range [0, 15], we add and subtract 8 in Eq. (9), resulting in
 [PPd[k]] = -8 + [PPd[k]] (10)

 with
 [PPd[k]] = 8 - Ysk + (-1)Ys

k Td-1

Note that the term [PPd[k]] is always positive. Specifically, for positive partial products (Ysk = 0), this term results in
8 +Td-1 that is within the range [8], [12] (since 0 ≤Td-1 ≤4). For negative partial products (Ysk =1), this term results in 7 –Td-1 , that is
within the range [3], [7]. All of the -8 terms of the different partial products are grouped together in a constant -8 x x 10k+d

that is added as a constant correction term to the results of the reduction array.
Therefore, the PPd[k]’s are encoded as [PPd[k]] without the -8 terms, which are added later , with only positive values of the form
 [PPd[k]] = {(8 + Td-1) , if(Ysk = 0);
 (7 - Td-1) , if(Ysk =1); (11)
 resulting in [PPd[k]] [3, 12]
This encoding is implemented at bit level as an inversion of the 3 LSB’s of Td-1 if Ysk =1 and the concatenation of the MSB Ysk-

bar.
TABLE 2

Preferred Digit Recoding Mappings for NX Multiples

V. EVALUATION AND COMPARISON

The proposed combinational architectures for BCD 16x16-digit and 34 x 34-digit multipliers are evaluated and compared with other
representative BCD multipliers. The area and delay figures of our architectures were obtained from an area-delay evaluation model

www.ijraset.com Volume 3 Issue V, May 2015
IC Value: 13.98 ISSN: 2321-9653

International Journal for Research in Applied Science & Engineering
Technology (IJRASET)

©IJRASET 2015: All Rights are Reserved
721

for static CMOS gates, and validated with the synthesis of verified RTL models coded in VHDL.

A. Evaluation
 As stated above, the evaluation has been performed in two steps. First, a technological independent evaluation using a model for
static CMOS circuits based on Logical Effort (LE) has been carried out, and then the results obtained with this model have been
validated with the synthesis and functional verification of the RTL model.

B. Comparison
Table 3 shows the area and delay estimations obtained from synthesis for some representative BCD sequential and combinational
multipliers. As far as we know, the most representative High-performance BCD multipliers are 16 x16-digit combinational [12], and
sequential [9],[10], implementations.
The area and delay figures shown in Table 3 correspond to the minimum delay point of each implementation, and were obtained
from the synthesis results provided in the respective reference, except for the two multipliers of reference [12], which correspond to
an Estimation obtained by their authors using a LE-based model. The comparison ratios are given with respect to the area and delay
figures of a 53-bit binary Booth base-4 multiplier
The PPG of multipliers [7], is based on a SD base-5 scheme, that generates 32 BCD partial products for a 16-digit multiplier.
Though it only requires simple constant time delay BCD multiplicand multiples, the 9’s complement operation for obtaining the
negative multiples is more complex than a simple bit inversion. The partial product reduction implement is a BCD carry-save adder
tree build of BCD digit adders. On the other hand, the BCD partial products are reduced in [7] by using counters that compute the
binary sum of each column of digits sum, and subsequent binary to decimal conversions [7]. The BCD multiplier pre-computes all
the positive decimal multiplicand multiples {0X. . . 9X}. The delay of PPG is reduced by representing the complex operands (3X,
6X, 7X, 8X, 9X) as the sum of two simpler multiples. The number of partial products generated is therefore equivalent to that of the
SD base-5 scheme. The PPR tree is implemented with BCD digit adders This has the disadvantage of a large area compared to the
other BCD multipliers analysed.
The two 16 x16-digit BCD multipliers of [12] implement an easy-multiple PPG [9] (only pre-computes {2X, 4X, 5X) that produces
32 BCD partial products. The intermediate decimal partial product sums are computed in overloaded BCD to speed up the PPR
evaluation. The delay-improved design uses a tree structure built of five levels overloaded BCD digit adders, while the area-
improved design replaces two levels of these custom designed adders by three levels of 4: 2 compressors and a binary counter. This
reduces the area consumption but at the cost of introducing a significant latency penalty.

TABLE 3
Synthesis Results for Fixed-Point Multipliers

\

www.ijraset.com Volume 3 Issue V, May 2015
IC Value: 13.98 ISSN: 2321-9653

International Journal for Research in Applied Science & Engineering
Technology (IJRASET)

©IJRASET 2015: All Rights are Reserved
722

Fig. 3. Area-delay space for the fastest 16x16-digit mults.

To compare the high hardware cost of a combinational Decimal128 implementation, we also include in Table 3 the area and delay
figures obtained for our 34 x34-digit BCD multiplier. Due to the tight area and power consumption constraints of current DFUs [5],
a sequential architecture seems a more realistic solution than a fully pipelined implementation
for a commercial Decimal128 multiplier.
 Finally, we present a more detailed comparison of the fastest BCD 16 x16-digit combinational multipliers (SD Base-5 and SD
Base-10 [12], and the proposed one) in terms of latency and area. The corresponding area delay synthesis values are shown in Fig. 3
We have directly introduced in the figure the area-delay curves of referenced multipliers [9] and [11] as provided by their authors,
since all of them were synthesized using 90 nm CMOS standard cell libraries and similar conditions. The area-delay points for the
two multipliers of reference [12] correspond to an estimation obtained by their authors using a LE-based model.
From the area-delay space represented in Fig. 10, we observe that our proposed decimal multiplier has an area improvement roughly
in the range 20-35 percent depending on the target delay. On the other hand, for the minimum delay point (44FO4), the proposed
multiplier is still competitive with the fastest design shown in
 More recently, the authors of reference [12] have presented in a comparison study between their delay improved multiplier and the
multiplier of reference based on synthesis results using a TSMC 130 nm standard CMOS process under typical conditions (1.2 V, 25
C). They show that for the minimum delay point of each one of the two area-delay curves obtained, the delay-improved multiplier
[12] is 20 percent faster and has 10 percent less area compared to the design of Therefore, according to the curve corresponding to
the design presented should be to the left of the area-delay points corresponding to the delay-improved design presented in [12].

VI. CONCLUSION

In this paper we have presented the algorithm and architecture of a new BCD parallel multiplier. The improvements of the proposed
architecture rely on the use of certain redundant BCD codes, the XS-3 and ODDS representations. Partial products can be generated
very fast in the XS-3 representation using the SD base-10 PPG scheme: positive multiplicand multiples (0X, 1X, 2X, 3X, 4X, 5X)
are pre-computed in a carry-free way, while negative multiples are obtained by bit inversion of the positive ones. On the other hand,
recoding of XS-3 partial products to the ODDS representation is straightforward. The ODDS representation uses the redundant
digit-set [0, 15] and a 4-bit binary encoding (BCD encoding), which allows the use of a binary carry-save adder tree to perform
partial product reduction in a very efficient way. The area and delay figures estimated from both a theoretical model and synthesis
show that our BCD multiplier presents 20-35 percent less area than other design

REFERENCES

[1] A. Aswal, M. G. Perumal, and G. N. S. Prasanna, “On basic financial decimal operations on binary machines,” IEEE Trans. Comput., vol. 61, no. 8, pp. 1084–
1096, Aug. 2012.
[2] M. F. Cowlishaw, E. M. Schwarz, R. M. Smith, and C. F. Webb, “A decimal floating-point specification,” in Proc. 15th IEEE Symp. Comput. Arithmetic, Jun.

www.ijraset.com Volume 3 Issue V, May 2015
IC Value: 13.98 ISSN: 2321-9653

International Journal for Research in Applied Science & Engineering
Technology (IJRASET)

©IJRASET 2015: All Rights are Reserved
723

2001, pp. 147–154.
[3] M. F. Cowlishaw, “Decimal floating-point: Algorism for computers,” in Proc. 16th IEEE Symp. Comput. Arithmetic, Jul. 2003, pp. 104–111.
[4] S. Carlough and E. Schwarz, “Power6 decimal divide,” in Proc. 18th IEEE Symp. Appl.- Specific Syst., Arch., Process., Jul. 2007, pp. 128–133.
[5] S. Carlough, S. Mueller, A. Collura, and M. Kroener, “The IBM zEnterprise-196 decimal floating point accelerator,” in Proc. 20th IEEE Symp. Comput.
Arithmetic, Jul. 2011, pp. 139–146.
[6] L. Dadda, “Multioperand parallel decimal adder: A mixed binary and BCD approach,” IEEE Trans. Comput., vol. 56, no. 10, pp. 1320–1328, Oct. 2007.
[7] L. Dadda and A. Nannarelli, “A variant of a Base-10 combinational multiplier,” in Proc. IEEE Int. Symp. Circuits Syst., May 2008,pp. 3 370–3373.
[8] L. Eisen, J. W. Ward, H.-W. Tast, N. Mading, J. Leenstra, S. M. Mueller, C. Jacobi, J. Preiss, E. M. Schwarz, and S. R. Carlough, “IBM POWER6 accelerators:
VMX and DFU,” IBM J. Res. Dev., vol. 51, no. 6, pp. 663–684, Nov. 2007.
[9] M. A. Erle and M. J. Schulte, “Decimal multiplication via carrysave addition,” in Proc. IEEE Int. Conf Appl.-Specific Syst., Arch., Process., Jun. 2003, pp. 348–
358.
[10] M. A. Erle, E. M. Schwarz, and M. J. Schulte, “Decimal multiplication with efficient partial product generation,” in Proc. 17th IEEE Symp. Comput. Arithmetic,
Jun. 2005, pp. 21–28.
[11] Faraday Tech. Corp. (2004). 90nm UMC L90 standard performance low-K library (RVT). [Online]. Available: http://freelibrary.faraday- tech.com/
[12] S. Gorgin and G. Jaberipur, “A fully redundant decimal adder and its application in parallel decimal multipliers,” Microelectron. J., vol. 40, no. 10, pp. 1471–
1481, Oct. 2009.

