

IN APPLIED SCIENCE & ENGINEERING TECHNOLOGY

Volume: 7 Issue: VIII Month of publication: August 2019 DOI: http://doi.org/10.22214/ijraset.2019.8156

www.ijraset.com

Call: 🕥 08813907089 🔰 E-mail ID: ijraset@gmail.com

V. Kiran Babu¹, V. S. V. Sateesh², Dr. Ch. Shiva Reddy³

¹M. Tech.(Thermal Engineering), ²Associate Prof., ME Dept., ³Head of Department(Mechanical Engg.) Sreenidhi Institute of Science and Technology – Hyderabad (An Autonomous Institution)

Abstract: Fast industrialization has resulted quick increment of prior conditions. High utilization of non-sustainable energy has wipen out oil resources. Pollution contamination of Diesel has impact to environment. To solve these issues wise thinking for elective assets is required. The fuel highlights as calorific value, cetane number and flashpoint properties are same as diesel fuel. The usage of diesel engine has been increased in agriculture and transport sector fields due to fuel economy and high output power. Even though bio fuel concept is old one, not a single vehicle using bio fuel is running on Indian higher output power, peak cylinder pressure, ability of cold starting with the fixed compression ratio diesel engines when fuelled with both bio fuels and conventional fuels. When cotton seed oil blends are used in VCR engine at high compression ratio gives short ignition delay, low rise in pressure, higher release of heat and vast decrease in mass fraction when burnt compared to that of diesel. Also it is seen maximum thermal efficiency. There is considerable reduction in smoke and NOx compared to diesel fuel. Crude oil which is main source for energy production resulting degradation of environment with fossil fuel combustion. The combustion products SO2, CO2 and NOx are causing global warming. Scarcity of crude oil deepened year by year. The alternative fuel like vegetable oil as source of energy has good attention. It is renewable, bio degradable, nontoxic in nature with best quality of emissions. Apart from cotton seed oil there are karanja, jatropha, palm oil, rubber seed, sunflower oil, rape seed oil, neem oil, LPG, CNG, bio gas can be used. When the vegetable oil undergoes a process called transesterification where triglyceride molecules break into methyl ester (bio diesel). The performance and emission of single cylinder four stroke variable compression ratio engine when supplied 20%, 40% and 60% cotton seed oil blended with diesel is compared with standard diesel from no load to different loading conditions 3, 6, 9 and 12kg. It has been seen that blends of methyl ester can be used as alternative fuel without modifying the engine. The experiment has been conducted with compression ratios of 13:1, 16:1, 18:1. The impact of compression ratio for fuel consumption, brake thermal efficiency and exhaust gas emission has been calculated. It is observed that higher compression ratio resulted high cylinder pressure and so improved combustion and high brake thermal efficiency and thus low specific fuel consumption. When compression ratio increased vibration and noise of the engine reduced. The experiment has been conducted at constant speed of 1500rpm. The unborn hydrocarbon, carbon dioxide and carbon monoxide emissions are reduced when compared to diesel at all loads with reduction in specific fuel consumption. The B20 blend at 18:1 compression ratio has better engine characteristics than diesel. From cotton seed oil we can obtain methyl ester upon trans esterification using methanol catalyst.

I. INTRODUCTION

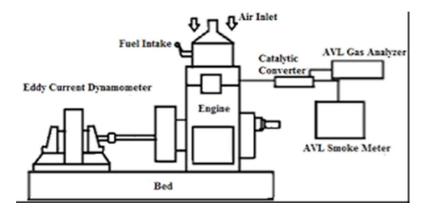
In present situation there is severe scarcity of fuel. So slogans like "save oil" etc. are getting popularized. Not only scarcity the cost is also increasing regularly. Due to this, the country's economy is also affected. The liquid petroleum fuel contributing high energy consumption due to their physiochemical and combustion properties causing pollution to environment. These fuels when burnt increase the level of CO2 in atmosphere responsible for global warming. It is required to introduce alternate fuels to replace fossil fuels. Because the fossil fuels resources will be exhausted in few decades.

Basically vegetable oils are extracted from seeds which involve drying, grinding, steaming, air cooling and oil extraction by hydraulic press. It has been observed that lower blends of biodiesel increase brake thermal efficiency and decrease fuel consumption. Biodiesel can be mixed with diesel in any ratio and are sulphur free fuel. Biodiesel is known as mono alkyl esters of long chain fatty acids derived from vegetable oils and animal fats. The fuel derived from plants and organic waste is biodiesel which is methyl ester formed by the reaction of vegetable oil and alcohol in strong acid or base presence. The very first engine which is invented was destroyed to run on vegetable oil made from peanut in the year 1900. As the fossil fuel reserves were ample at that

time. And also using vegetable oil directly in the engine caused problems like low fuel atomization and thickening of engine oil due to high viscosity. To overcome with high viscosity problem, there are four processes viz. dilution with diesel fuel, micro emulsification, pyrolysis and trasesterification. Out of these transesterification is very common which is the process of formation of bio diesel from vegetable oil. Our country imports petroleum of cost Rs.8,00,000 million per year. So mixing of at least 5% bio diesel to diesel can save Rs. 40,000 million per year.

Cotton seed

Properties of 100% pure Cottonseed oil Biodiesel


Sr. No.	Test Parameters of Pure cottonseed oil biodiesel	Units	Results	Test Standards
1	Kinematic Viscosity@40° C	cSt	7.5	IS 1448 (Part I) (P-25)
2	Density	kg/m ³	904.8	IS 1448 (Part I) (P-16)
3	Fire Point	°C	190	IS 1448 (P-20)
4	Pour Point	°C	-15	IS 1448 (Part I) (P-10)
5	Cloud Point	°C	-17	IS 1448 (Part I) (P-10)
6	Flash Point	°C	142	IS 1448 (P-69)
7	Calorific Value	kJ/kg	36802	IS 1448 Bomb Calorimeter

Thermo-physical properties of Cottonseed oil biodiesel/diesel blends

Fuel	Calorific Value kJ/kg	Kinematic viscosity cSt	Cloud point °C	Pour point °C	Density Kg/m ³
C100	36802	7.5	-17	-15	904.8
Diesel	43851	2.5	-23	-21	817.4
C20D80	43221	2.8	-22	-18	850.1
C40D60	42298	2.8	-21	-18	865.6
C60D40	40911	5.3	-19	-16	878.1
C80D20	39658	5.9	-18	-15	891.5
C20D75E5	39761	2.6	-24	-20	842.9

Properties of Diesel and Crude Oils

S.NO	PROPERTY	DIESEL	COTTONSEED	NEEMSEED
1	Calorific Value	43,000 kJ/kg	39,648kJ/kg	35,125 kJ/kg
2	Flash Point	44° C	234°C	178°C
3	Fire Point	49° C	192 [°] C	209 [°] C
4	Viscosity	0.278 poise	2.52 poise	1.864 poise
5	Density	835 kg/m ³	850 kg/m ³	928 kg/m ³

ISSN: 2321-9653; IC Value: 45.98; SJ Impact Factor: 7.177 Volume 7 Issue VIII, Aug 2019- Available at www.ijraset.com

			10	0% [DIESE	L						
								1				
S.NO.	N	LOAD	MANO	METER	TE	MPE	RATU	RE i	n ∘C			
	in RPM	in KG	H1	H2	T1	T2	T3	T4	T	5	т	C.R.
1	1500	0	35	60	27	25	28	12	7 10	03 2	20	13:01
2	1500	3	35	60	28	29	30	21	7 1	79 3	31	13:01
3	1500	6	35	60	28	30	31	24	6 2	05 2	21	13:01
4	1500	9	35	60	28	30	31	28	1 2	37 3	21	13:01
5	1500	12	35	60	28	30	32	32	2 2	78	17	13:01
	т = т	ME FOR	R 10CC		CONS	UMP	TION	-				
S.NO.	N	LOAD	MANO	METER	TE	MPE	RATU	RE I	n ∘C			
	in RPM	in KG	H1	H2	T1	T2	тз	T4	Т	5	т	C.R.
1	1500	0	35	60	28	30	31	21	4 1	98 4	14	16:01
2	1500	3	35	60	29	30	32	23			10	16:01
3	1500	6	35	60	29	31	32	26	5 24	41 3	28	16:01
4	1500	9	35	60	29	32	33	32	-		20	16:01
5	1500	12	35	60	29	33	34	35	-		15	16:01
				-								
	T = T	ME FOR	R 10CC	OF FUEL	CONS	UMP	TION	(
S.NO.	N	LOAD	MANO	METER	TE	MPE	RATU	RE I	n °C			
	in RPM	in KG	H1	H2	T1	T2	ТЗ	T4		5	т	C.R.
1	1500	0	35	60	31	32	33	13	7 1	31 3	88	18:01
2	1500	3	35	60	31	33	34	18	-	1000	33	18:01
3	1500	6	35	60	31	33	34	22			25	18:01
4	1500	9	35	60	31	33	35	26	-	1.	19	18:01
5	1500	12	35	60	31	34	36	31		200	15	18:01
								4				
	T = T	ME FOI	C10CC	OF FUEL	CONSI	UMP	TION					
			C	OTTON	SEED	0	L 20	%				
	S.NO.	N	LOAD	MANO	METER	Т	MPE	RATU	RE I	n ∘C		
		in RPM	in KG	H1	H2	T1	T2	ТЗ	T4	T5	т	C.R.
	1	1500	0	35	60	31	32	32	158	128	19	13:01
	2	1500	3	35	60	31	32	33	202	164	19	13:01
	3	1500	6	35	60	31	33	33	246	200	20	13:01
	4	1500	9	35	60	31	34	34	267	224	18	13:01
	5	1500	12	35	60	30	33	34	286	245	14	13:01
	Tis	TIME FO	OR 10CO	OF FUE	L CONS	SUM	ртіо	Nin S	ECO	NDS		
	S.NO.	N	LOAD	MANO	AFTER		MPE	DATI	IDE :		-	-
	J.NU.		LUAD	- ANON	THE FER		- VIPE					

	in RPM	in KG	H1	H2	T1	T2	тз	T4	Т5	т	C.R.
1	1500	0	35	60	30	33	33	207	191	38	16:01
2	1500	3	35	60	30	33	33	218	202	29	16:01
3	1500	6	35	60	30	32	34	238	219	22	16:01
4	1500	9	35	60	30	33	34	259	238	18	16:01
5	1500	12	35	60	30	33	35	286	261	14	16:01
Tis	TIME FO	DR 10CC	OF FUE	LCON	SUM	PTIO	Nin	SECOR	NDS		

S.NO.	N	LOAD	MANOR	NETER	TE	MPE	RATI	JRE ir	n ∘C		
	in RPM	in KG	H1	H2	T1	T2	тз	T4	Т5	т	C.R.
1	1500	0	35	60	30	33	33	217	211	41	18:01
2	1500	3	35	60	30	33	34	227	219	32	18:01
3	1500	6	35	60	30	33	34	257	242	23	18:01
4	1500	9	35	60	30	33	34	277	263	17	18:01
5	1500	12	35	60	30	34	35	302	284	13	18:01
Tis		DR 10C0		LCONS	UM	PTIO	Nin	SECON	NDS		

ISSN: 2321-9653; IC Value: 45.98; SJ Impact Factor: 7.177 Volume 7 Issue VIII, Aug 2019- Available at www.ijraset.com

			сотто	N SEE	DO	L 409	6				
S.NO.	N	LOAD	MANON	IETER	1	EMPE	RATUR	E in °C			
	in RPM	in KG	H1	H2	T1	T2	Т3	T4	T5	т	C.R.
1	1500	0	35	60	31	32	32	158	128	19	13:01
2	1500	3	35	60	31	32	33	202	164	19	13:01
3	1500	6	35	60	31	33	33	246	200	20	13:01
4	1500	9	35	60	31	34	34	267	224	18	13:01
5	1500	12	35	60	30	33	34	286	245	14	13:01
T is	TIME FO	R 10CC	OF FUEL	CONSU	MPTIC	ON	in	SECON	IDS		
S.NO.	N	LOAD	MANON	TER	1		RATUR	E in •C			
	in RPM	in KG	H1	H2	T1	T2	T3	T4	T5	т	C.R.
1	1500	0	35	60	30	33	33	207	191	38	16:01
2	1500	3	35	60	30	33	33	218	202	29	16:01
3	1500	6	35	60	30	32	34	238	219	22	16:01
4	1500	9	35	60	30	33	34	259	238	18	16:01
5	1500	12	35	60	30	33	35	286	261	14	16:01
T is	TIME FO	R 10CC		CONSU	мртю	ON	in	SECON	IDS		
S.NO.	N	LOAD	MANON	IETER	1	EMPE	RATUR	E in ∘C			
	in RPM	in KG	H1	H2	T1	T2	тз	T4	T5	т	C.R.
1	1500	0	35	60	30	33	33	217	211	41	18:01
2	1500	3	35	60	30	33	34	227	219	32	18:01
3	1500	6	35	60	30	33	34	257	242	23	18:01
4	1500	9	35	60	30	33	34	277	263	17	18:01
5	1500	12	35	60	30	34	35	302	284	13	18:01
T is	TIMEEO	R 1000	OF FUEL	ONSU	MPTI	ON	in	SECON	IDS		

			сотто	N SEE	DO	IL 60	%	1			
S.NO.	N	LOAD	MANO	METER	Т	EMPE	RATU	RE in	°C		
	in RPM	in KG	H1	H2	T1	T2	тз	T4	T5	т	C.R.
1	1500	0	35	60	31	32	32	158	128	19	13:01
2	1500	3	35	60	31	32	33	202	164	19	13:01
3	1500	6	35	60	31	33	33	246	200	20	13:01
4	1500	9	35	60	31	34	34	267	224	18	13:01
5	1500	12	35	60	30	33	34	286	245	14	13:01
T is	TIME FO	R 10CC	OF FUE		UMP	TION	in	SECON	IDS		
S.NO.	N	LOAD	MANO	METER	т	EMPE	RATU	IRE in	°C		
	in RPM	in KG	H1	H2	T1	T2	тз	T4	T5	т	C.R.
1	1500	0	35	60	30	33	33	207	191	38	16:01
2	1500	3	35	60	30	33	33	218	202	29	16:01
3	1500	6	35	60	30	32	34	238	219	22	16:01
4	1500	9	35	60	30	33	34	259	238	18	16:01
5	1500	12	35	60	30	33	35	286	261	14	16:01
T is	TIME FO	R 10CC	OF FUE		UMP	TION	in	SECON	IDS		
S.NO.	N	LOAD	MANO	METER	Т	EMPE	RATU	RE in	°C		
	in RPM	in KG	H1	H2	T1	T2	тз	T4	T5	т	C.R.
1	1500	0	35	60	30	33	33	217	211	41	18:01
2	1500	3	35	60	30	33	34	227	219	32	18:01
3	1500	6	35	60	30	33	34	257	242	23	18:01
4	1500	9	35	60	30	33	34	277	263	17	18:01
5	1500	12	35	60	30	34	35	302	284	13	18:01

ISSN: 2321-9653; IC Value: 45.98; SJ Impact Factor: 7.177 Volume 7 Issue VIII, Aug 2019- Available at www.ijraset.com

II. CALCULATIONS

A. <u>100% Diesel, CR 13 : 1, time 17sec, 10cc fuel</u> h1 & h2 = 35 & 60 for load 12kg, speed 1500 rpm. B.P. $=\frac{2\pi NT}{60 \times 1000} =$ $\frac{2 \times \pi \times 1500 \times (12 \times 0.15 \times 9.81)}{2 \times 100}$ = 2.7737 kw 1) where B.P. is brake power N is speed in rpm T is torque. 2) mfc = $\frac{\rho \times \text{vol. of fuel} \times 3600}{1.000} = \frac{820 \times 10 \times 10^{-6} \times 3600}{1.000} = 1.7364 \text{ kg/hr}.$ t 17 where mfc is mass of fuel consumption. ρ is density of fuel. ρ of Diesel 820 kg/m³. ρ of Cotton seed oil 917 kg/m³ ρ of 20% blend (C20D80) is $0.2 \times 917 + 0.8 \times 820 = 839 \text{ kg/m}^3$ ρ of 40% blend (C40D60) is $0.4 \times 917 + 0.6 \times 820 = 859 \text{ kg/m}^3$ ρ of 60% blend (C60D40) is $0.6 \times 917 + 0.4 \times 820 = 878 \text{ kg/m}^3$ t is time taken in seconds. 3) Bsfc = $\frac{\text{mfc}}{\text{BP}} = \frac{1.7364}{2.7737} = 0.626 \text{ kg/kw-hr}$ where Bsfc is Brake thermal specific fuel consumption. 4) Bsec = $\frac{\text{mfc} \times \text{C.V.}}{\text{B.P.}}$ kj/kw-hr = $\frac{0.626 \times 44200}{2.7737}$ = 99.76 kj/kw-hr where Bsec is Brake thermal specific energy consumption C.V. is Calorific Value. C.V. for Diesel 44200 kj/kg. C.V. for Cotton seed oil 39800 kj/kg. 20% blend (C20D80) = $0.2 \times 39800 + 0.8 \times 44200 = 43320$ kj/kg 40% blend (C40D60) = $0.4 \times 39800 + 0.6 \times 44200 = 42440$ kj/kg 60% blend (C60D40) = $0.6 \times 39800 + 0.4 \times 44200 = 41560$ kj/kg 5) η_v Volumetric efficiency $\eta_v = \frac{V_a}{V_c} \times 100 \%$ $V_a = C_d \times A\sqrt{2GH} \times 3600 \text{ m}^3/\text{hr}.$ $= 0.62 \times \pi \frac{(0.02)^2}{4} \sqrt{2 \times 9.81 \times 20.96} \times 3600 = 14.22 \text{m}^3/\text{hr.}$ where V_a is actual volume of air sucked into the cylinder. C_d is coefficient of discharge. $H = \frac{h}{1000} \times \frac{\rho_{w}}{\rho_{a}} \text{ where } h = h_{2} - h_{1} = 60 - 35 = 25.$ $H = \frac{25}{1000} \times \frac{1000}{1.193} = 20.96$ $V_{\rm s} = \frac{\pi d^2}{4} \times L \times \frac{N}{2} \times 60$ $=\frac{\pi(0.08)^2}{4} \times 0.11 \times \frac{1500}{2} \times 60 = 25.22 \text{ m}^3/\text{hr.}$ where V_s is swept volume d is diameter of the orifice. L is length $\eta_v = \frac{V_a}{V_s} \times 100 = \frac{14.22}{24.88} \times 100 = 57.2 \%$ 6) η_{bth} Brake Thermal efficiency (or overall efficiency) $\eta_{bth} = \frac{B.P.\times 3600}{mfc\times C.V.} \times 100\%$ $=\frac{2.7737 \times 3600}{1.7364 \times 44200} \times 100 = 13\%$ 100% Diesel, CR 13 : 1, time taken 31sec, volume of fuel 10cc, h1 & h2 = 35 & 60, load applied 3kg, speed 1500 rpm. *B*. $\frac{2 \times \pi \times 1500 \times (3 \times 0.15 \times 9.81)}{60 \times 1000} = 0.69 \text{ kw}$ B.P. $=\frac{2\pi NT}{60 \times 1000} =$ 1)

where B.P. is brake power N is speed in rpm T is torque . 60×1000

ISSN: 2321-9653; IC Value: 45.98; SJ Impact Factor: 7.177 Volume 7 Issue VIII, Aug 2019- Available at www.ijraset.com

2) mfc = $\frac{\rho \times \text{vol. of fuel} \times 3600}{\text{t}} = \frac{820 \times 10 \times 10^{-6} \times 3600}{31} = 0.95 \text{ kg/hr}.$ where mfc is mass of fuel consumption. ρ is density of fuel. ρ of Diesel 820 kg/m³. ρ of Cotton seed oil 917 kg/m³ ρ of 20% blend (C20D80) is $0.2 \times 917 + 0.8 \times 820 = 839 \text{ kg/m}^3$ ρ of 40% blend (C40D60) is $0.4 \times 917 + 0.6 \times 820 = 859 \text{ kg/m}^3$ ρ of 60% blend (C60D40) is $0.6 \times 917 + 0.4 \times 820 = 878 \text{ kg/m}^3$ t is time taken in seconds. 3) Bsfc = $\frac{\text{mfc}}{\text{BP}} = \frac{0.95}{0.69} = 1.37 \text{ kg/kw-hr}$ where Bsfc is Brake thermal specific fuel consumption. 4) Bsec = $\frac{\text{mfc} \times \text{C.V.}}{\text{B.P.}} \text{ kj/kw-hr} = \frac{0.95 \times 44200}{0.69} = 60698 \text{ kj/kw-hr}$ where Bsec is Brake thermal specific energy consumption C.V. is Calorific Value. C.V. for Diesel 44200 kj/kg. C.V. for Cotton seed oil 39800 kj/kg. 20% blend (C20D80) = $0.2 \times 39800 + 0.8 \times 44200 = 43320$ kj/kg 40% blend (C40D60) = $0.4 \times 39800 + 0.6 \times 44200 = 42440$ kj/kg 60% blend (C60D40) = $0.6 \times 39800 + 0.4 \times 44200 = 41560$ kj/kg 5) η_v Volumetric efficiency $\eta_v = \frac{V_a}{V_c} \times 100 \%$ $V_a = C_d \times A\sqrt{2GH} \times 3600 \text{ m}^3/\text{hr}.$ $= 0.62 \times \pi \frac{(0.02)^2}{4} \sqrt{2 \times 9.81 \times 20.96} \times 3600 = 14.22 \text{m}^3/\text{hr.}$ where V_a is actual volume of air sucked into the cylinder. C_d is coefficient of discharge. $H = \frac{h}{1000} \times \frac{\rho_{w}}{\rho_{a}} \text{ where } h = h_{2} - h_{1} = 60 - 35 = 25.$

 $H = \frac{25}{1000} \times \frac{1000}{1.193} = 20.96$ $V_{\rm s} = \frac{\pi d^2}{4} \times L \times \frac{N}{2} \times 60$ $=\frac{\pi(0.08)^2}{4} \times 0.11 \times \frac{1500}{2} \times 60 = 25.22 \text{ m}^3/\text{hr}.$ where V_s is swept volume d is diameter of the orifice. L is length. $\eta_v = \frac{V_a}{V_s} \times 100 = \frac{14.22}{24.88} \times 100 = 57.2 \%$ 6) η_{hth} Brake Thermal efficiency (overall efficiency) $= \frac{B.P.\times3600}{mfc\times CV} \times 100 \ \% = \frac{0.69\times3600}{0.95\times44200} \times 100 = 5.93 \ \%$ C. 20% blend (C20D80), CR 13:1, time 19sec, 10cc fuel, h1 & h2 = 35 & 60 for load 3kg, speed 1500 rpm. *I*) B.P. $= \frac{2\pi NT}{60 \times 1000} = \frac{2 \times \pi \times 1500 \times (3 \times 0.15 \times 9.81)}{60 \times 1000} = 0.693 \text{ kw}$ where B.P. is brake power N is speed in rpm T is torque. 2) mfc = $\frac{\rho \times \text{vol. of fuel} \times 3600}{\text{t}} = \frac{839 \times 10 \times 10^{-6} \times 3600}{19} = 1.59 \text{ kg/hr}.$ where mfc is mass of fuel consumption. ρ is density of fuel. ρ of Diesel 820 kg/m³. ρ of Cotton seed oil 917 kg/m³ ρ of 20% blend (C20D80) is $0.2 \times 917 + 0.8 \times 820 = 839 \text{ kg/m}^3$ ρ of 40% blend (C40D60) is $0.4 \times 917 + 0.6 \times 820 = 859 \text{ kg/m}^3$

4)

ISSN: 2321-9653; IC Value: 45.98; SJ Impact Factor: 7.177 Volume 7 Issue VIII, Aug 2019- Available at www.ijraset.com

 ρ of 60% blend (C60D40) is $0.6 \times 917 + 0.4 \times 820 = 878 \text{ kg/m}^3$ t is time taken in seconds.

3) Bsfc =
$$\frac{\text{mic}}{\text{BP}} = \frac{1.59}{0.69} = 2.3 \text{ kg/kw-hr}$$

where Bsfc is Brake thermal specific fuel consumption.

Bsec =
$$\frac{\text{mfc} \times \text{C.V.}}{\text{B.P.}}$$
 kj/kw-hr
= $\frac{1.59 \times 43320}{0.69}$ = 99824 kj/kw-hr

where Bsec is Brake thermal specific energy consumption

C.V. is Calorific Value.

C.V. for Diesel 44200 kj/kg C.V. for Cotton seed oil 39800 kj/kg 20% blend (C20D80) = $0.2 \times 39800 + 0.8 \times 44200 = 43320$ kj/kg 40% blend (C40D60) = $0.4 \times 39800 + 0.6 \times 44200 = 42440$ kj/kg 60% blend (C60D40) = $0.6 \times 39800 + 0.4 \times 44200 = 41560$ kj/kg

5)
$$\eta_v$$
 Volumetric efficiency $\eta_v = \frac{v_a}{v_s} \times 100 \%$

$$\begin{split} V_a &= C_d \times A\sqrt{2GH} \times 3600 \ m^3/hr. \\ &= 0.62 \times \ \pi \frac{(0.02)^2}{4} \sqrt{2 \times 9.81 \times 20.96} \ \times 3600 \ = 14.22 m^3/hr. \end{split}$$

where V_a is actual volume of air sucked into the cylinder.

 C_d is coefficient of discharge.

$$H = \frac{h}{1000} \times \frac{\rho_{w}}{\rho_{a}} \text{ where } h = h_{2} - h_{1} = 60 - 35 = 25.$$

$$H = \frac{25}{1000} \times \frac{1000}{1.193} = 20.96$$

$$V_{s} = \frac{\pi d^{2}}{4} \times L \times \frac{N}{2} \times 60$$

$$= \frac{\pi (0.08)^{2}}{4} \times 0.11 \times \frac{1500}{2} \times 60 = 25.22 \text{ m}^{3}/\text{hr.}$$
where V_s is swept volume d is diameter of the orifice L is length.
$$\eta_{v} = \frac{V_{a}}{V_{s}} \times 100 = \frac{14.22}{24.88} \times 100 = 57.2 \%$$

6) η_{bth} Brake Thermal efficiency (or overall efficiency) $\eta_{bth} = \frac{B.P.\times 3600}{mfc \times C.V.} \times 100 \%$

$$= \frac{0.69 \times 3600}{1.59 \times 43320} \times 100 = 3.6\%$$

D. <u>40%blend (C40D60), CR 13:1, time taken 23sec, volume of fuel 10cc, h1 & h2 = 35 & 60, applied load 3kg, N = 1500 rpm.</u>

1) B.P. $=\frac{2\pi NT}{60\times1000} = \frac{2\times\pi\times1500\times(3\times0.15\times9.81)}{60\times1000} = 0.693 \text{ kw}$ where B.P. is brake power N is speed in rpm T is torque. 2) mfc $= \frac{\rho\times\text{vol. of fuel}\times3600}{t} = \frac{859\times10\times10^{-6}\times3600}{23} = 1.3 \text{ kg/hr.}$ where mfc is mass of fuel consumption. ρ is density of fuel. ρ of Diesel 820 kg/m³. ρ of Cotton seed oil 917 kg/m³ ρ of 20% blend (C20D80) is $0.2 \times 917 + 0.8 \times 820 = 839 \text{ kg/m}^3$ ρ of 40% blend (C40D60) is $0.4 \times 917 + 0.6 \times 820 = 859 \text{ kg/m}^3$ ρ of 60% blend (C60D40) is $0.6 \times 917 + 0.4 \times 820 = 878 \text{ kg/m}^3$ t is time taken in seconds. 2) Befa = $\frac{\text{mfc}}{1.3} = 1.04 \text{ kg/mm}$

3) Bsfc = $\frac{\text{mfc}}{\text{BP}} = \frac{1.3}{0.69} = 1.94 \text{ kg/kw-hr}$

where Bsfc is Brake thermal specific fuel consumption.

ISSN: 2321-9653; IC Value: 45.98; SJ Impact Factor: 7.177

Volume 7 Issue VIII, Aug 2019- Available at www.ijraset.com

4) Bsec =
$$\frac{\text{mfc} \times \text{C.V.}}{\text{B.P.}}$$
 kj/kw-hr
= $\frac{1.3 \times 42440}{2}$ = 82289 kj/k

w-hr 0.69 where Bsec is Brake thermal specific energy consumption C.V. is Calorific Value. C.V. for Diesel 44200 kj/kg C.V. for Cotton seed oil 39800 kj/kg 20% blend (C20D80) = $0.2 \times 39800 + 0.8 \times 44200 = 43320$ kj/kg 40% blend (C40D60) = $0.4 \times 39800 + 0.6 \times 44200 = 42440$ kj/kg 60% blend (C60D40) = $0.6 \times 39800 + 0.4 \times 44200 = 41560$ kj/kg 5) η_v Volumetric efficiency $\eta_v = \frac{V_a}{V_s} \times 100 \%$ $V_a = C_d \times A\sqrt{2GH} \times 3600 \text{ m}^3/\text{hr}.$ $= 0.62 \times \pi \frac{(0.02)^2}{4} \sqrt{2 \times 9.81 \times 20.96} \times 3600 = 14.22 \text{m}^3/\text{hr}.$ where V_a is actual volume of air sucked into the cylinder. C_d is coefficient of discharge. $H = \frac{h}{1000} \times \frac{\rho_w}{\rho_a}$ where $h = h_2 - h_1 = 60 - 35 = 25$. $H = \frac{25}{1000} \times \frac{1000}{1.193} = 20.96$ $V_{\rm s} = \frac{\pi d^2}{4} \times L \times \frac{N}{2} \times 60$ $= \frac{\pi (0.08)^2}{4} \times 0.11 \times \frac{1500}{2} \times 60 = 25.22 \text{ m}^3/\text{hr.}$ where V_s is swept volume d is diameter of the orifice L is length. $\eta_v = \frac{V_a}{V_s} \times 100 = \frac{14.22}{24.88} \times 100 = 57.2 \%$ 6) η_{hth} Brake Thermal efficiency (or overall efficiency) $= \frac{B.P.\times3600}{mfc\times CV} \times 100 \ \% = \frac{0.69\times3600}{13\times42440} \times 100 = 4.37 \ \%$ E. <u>60%blend (C60D40), CR 13:1, time taken 17sec, volume of fuel 10cc, h1 & h2 = 35 & 60, applied load 3kg, N = 1500 rpm.</u> 1) B.P. $= \frac{2\pi NT}{60 \times 1000} = \frac{2 \times \pi \times 1500 \times (3 \times 0.15 \times 9.81)}{60 \times 1000} = 0.693 \text{ kw}$ where B.P. is brake power N is speed in rpm T is torque. 2) mfc = $\frac{\rho \times \text{vol. of fuel} \times 3600}{t} = \frac{878 \times 10 \times 10^{-6} \times 3600}{17} = 1.86 \text{ kg/hr}.$ where mfc is mass of fuel consumption. p is density of fuel. ρ of Diesel 820 kg/m³. ρ of Cotton seed oil 917 kg/m³ ρ of 20% blend (C20D80) is $0.2 \times 917 + 0.8 \times 820 = 839 \text{ kg/m}^3$ ρ of 40% blend (C40D60) is $0.4 \times 917 + 0.6 \times 820 = 859 \text{ kg/m}^3$ ρ of 60% blend (C60D40) is $0.6 \times 917 + 0.4 \times 820 = 878 \text{ kg/m}^3$ t is time taken in seconds. 3) Bsfc = $\frac{\text{mfc}}{\text{BP}} = \frac{1.86}{0.69} = 1.88 \text{ kg/kw-hr}$ where Bsfc is Brake thermal specific fuel consumption.

4) Bsec =
$$\frac{\text{mfc} \times \text{C.V.}}{\text{B.P.}} \text{ kj/kw-hr}$$

= $\frac{1.86 \times 42440}{0.69}$ = 111435 kj/kw-hr

where Bsec is Brake thermal specific energy consumptionC.V. is Calorific Value.C.V. for Diesel 44200 kj/kgC.V. for Cotton seed oil 39800 kj/kg

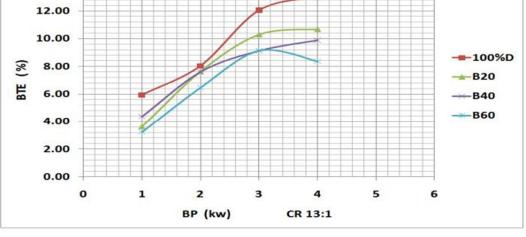
ISSN: 2321-9653; IC Value: 45.98; SJ Impact Factor: 7.177 Volume 7 Issue VIII, Aug 2019- Available at www.ijraset.com

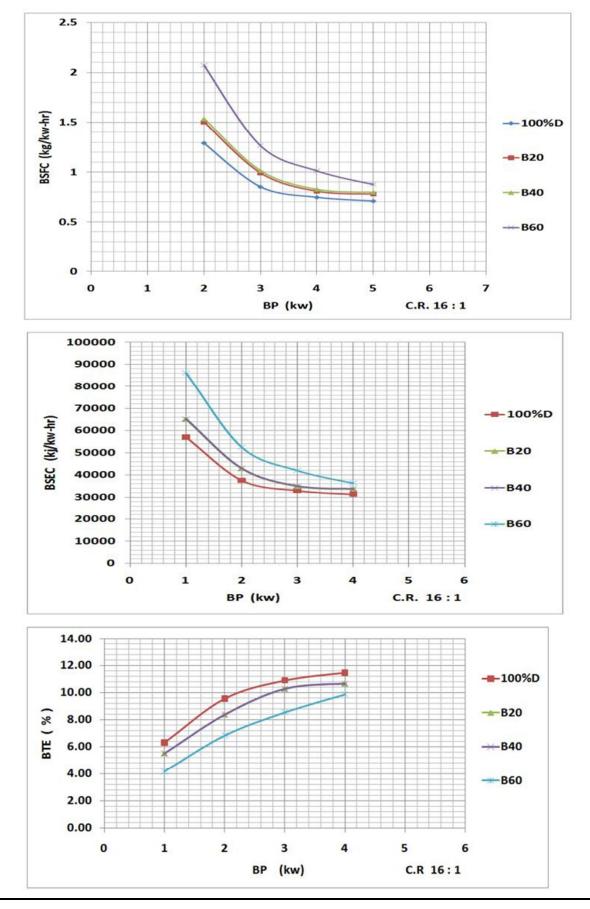
20% blend (C20D80) = $0.2 \times 39800 + 0.8 \times 44200 = 43320$ kj/kg 40% blend (C40D60) = $0.4 \times 39800 + 0.6 \times 44200 = 42440$ kj/kg 60% blend (C60D40) = $0.6 \times 39800 + 0.4 \times 44200 = 41560 \text{ kj/kg}$ 5) η_v Volumetric efficiency $\eta_v = \frac{V_a}{V_c} \times 100 \%$ $V_a = C_d \times A\sqrt{2GH} \times 3600 \text{ m}^3/\text{hr}.$ $= 0.62 \times \ \pi \frac{(0.02)^2}{4} \sqrt{2 \times 9.81 \times 20.96} \ \times 3600 \ = 14.22 m^3/hr.$ where V_a is actual volume of air sucked into the cylinder. C_d is coefficient of discharge. $H = \frac{h}{1000} \times \frac{\rho_{w}}{\rho_{a}} \text{ where } h = h_{2} - h_{1} = 60 - 35 = 25.$ $H = \frac{25}{1000} \times \frac{1000}{1.193} = 20.96$ $V_{\rm s} = \frac{\pi d^2}{4} \times L \times \frac{N}{2} \times 60$ $=\frac{\pi(0.08)^2}{4} \times 0.11 \times \frac{1500}{2} \times 60 = 25.22 \text{ m}^3/\text{hr}.$ d is diameter of the orifice where V_s is swept volume L is length. $\eta_v = \frac{V_a}{V_s} \times 100 = \frac{14.22}{24.88} \times 100 = 57.2 \%$ 6) η_{bth} Brake Thermal efficiency (or overall efficiency)

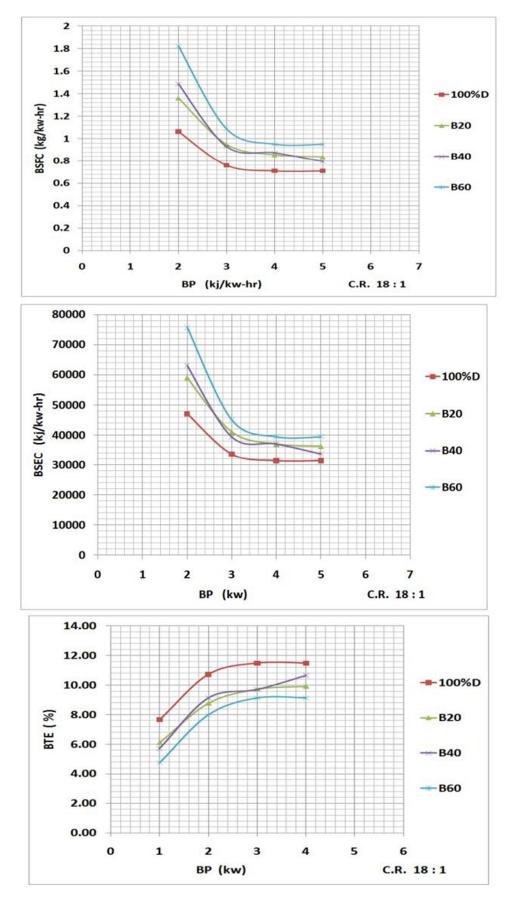
 $= \frac{B.P.\times 3600}{mfc\times C.V.} \times 100 \ \% = \frac{0.69\times 3600}{1.86\times 41560} \times 100 = 3.23 \ \%$

S.no.	Load	Time	c.r.	BP	Mfc	Bsfc	Bsec	Bte (N bth)
	in KG	in SEC		in KW	in KG/HR	KG/KW-HR	KJ/KW-HR	in %
1	3	31	13	0.69	0.95	1.37	60698	5.93
2	6	21	13	1.39	1.41	1.01	44801	8.04
3	9	21	13	2.08	1.41	0.68	29867	12.05
4	12	17	13	2.77	1.74	0.63	27671	13.01
S.no.	Load	Time	c.r.	BP	Mfc	Bsfc	Bsec	Bte (N bth)
	in KG	in SEC		in KW	in KG/HR	KG/KW-HR	KJ/KW-HR	in %
1	3	33	16	0.69	0.89	1.29	57019	6.31
2	6	25	16	1.39	1.18	0.85	37633	9.57
3	9	19	16	2.08	1.55	0.75	33011	10.91
4	12	15	16	2.77	1.97	0.71	31361	11.48
S.no.	Load	Time	c.r.	BP	Mfc	Bsfc	Bsec	Bte (N bth)
	in KG	in SEC		in KW	in KG/HR	KG/KW-HR	KJ/KW-HR	in %
1	3	40	18	0.69	0.74	1.06	47041	7.65
2	6	28	18	1.39	1.05	0.76	33601	10.71
3	9	20	18	2.08	1.48	0.71	31361	11.48
4	12	15	18	2.77	1.97	0.71	31361	11.48

S.no.	Load	Time	c.r.	BP	mfc	Bsfc	Bsec	Bte (N bth
	in kg	in sec		in kw	in kg/hr	kg/kw-hr	kj/kw-hr	in %
1	3	31	13	0.69	0.95	1.37	60698	5.93
2	6	21	13	1.39	1.41	1.01	44801	8.04
3	9	21	13	2.08	1.41	0.68	29867	12.05
4	12	17	13	2.77	1.74	0.63	27671	13.01
							in %	
C20D80	, Density	= 839 kg/	cu.m., (.V. = 433	20 kj/kg,	10cc fuel	, N = 1500	RPM
S.no.	Load	Time	c.r.	BP	mfc	Bsfc	Bsec	Bte (N bth)
	in kg	in sec		in kw	in kg/hr	kg/kw-hr	kj/kw-hr	in %
1	3	19	13	0.69	1.59	2.29	99311	3.62
2	6	20	13	1.39	1.51	1.09	47173	7.63
3	9	18	13	2.08	1.68	0.81	34943	10.30
4	12	14	13	2.77	2.16	0.78	33695	10.68
S.no.	Load	Time	c.r.	BP	mfc	Bsfc	Bsec	Bte (N bth
	in kg	in sec		in kw	in kg/hr	kg/kw-hr	kj/kw-hr	in %
1	3	23	13	0.69	1.34	1.94	82289	4.37
2	6	20	13	1.39	1.55	1.11	47316	7.61
3	9	16	13	2.08	1.93	0.93	39430	9.13
4	12	13	13	2.77	2.38	0.86	36397	9.89
C60D40	, Density	= 878 kg/	cu.m., (C.V. = 415	60 kj/kg,	10cc fuel	, N = 1500	RPM
S.no.	Load	Time	c.r.	BP	mfc	Bsfc	Bsec	Bte (N bth)
	in kg	in sec		in kw	in kg/hr	kg/kw-hr	kj/kw-hr	in %
1	3	17	13	0.69	1.86	2.68	111435	3.23
2	6	17	13	1.39	1.86	1.34	55717	6.46
3	9	16	13	2.08	1.98	0.95	39467	9.12
4	12	11	13	2.77	2.87	1.04	43054	8.36
							N Statistics Interest	


S.no.	Load	Time	c.r.	BP	mfc	Bsfc	Bsec	Bte (Noth)
	in kg	in sec		in kw	in kg/hr	kg/kw-hr	kj/kw-hr	in %
1	3	33	16	0.69	0.89	1.29	57019	6.31
2	6	25	16	1.39	1.18	0.85	37633	9.57
3	9	19	16	2.08	1.55	0.75	33011	10.91
4	12	15	16	2.77	1.97	0.71	31361	11.48
C20D80	, Density	= 839 kg/	cu.m., (C.V. = 433	20 kj/kg,	10cc fuel,	N = 1500 R	PM
S.no.	Load	Time	c.r.	BP	mfc	Bsfc	Bsec	Bte (Noth)
	in kg	in sec		in kw	in kg/hr	kg/kw-hr	kj/kw-hr	in %
1	3	29	16	0.69	1.04	1.50	65066	5.53
2	6	22	16	1.39	1.37	0.99	42884	8.39
3	9	18	16	2.08	1.68	0.81	34943	10.30
4	12	14	16	2.77	2.16	0.78	33695	10.68
C40D60	, Density	= 859 kg/	cu.m., (C.V. = 424	40 kj/kg,	10cc fuel, I	N = 1500 R	PM_
<u>C40D60</u> S.no.), Density Load	<u>= 859 kg/</u> Time	<u>cu.m., (</u> c.r.	<u>C.V. = 424</u> B P	40 ki/kg, mfc	10cc fuel, I Bsfc	N = 1500 R Bsec	
								PM_ Bte (Ŋ bth) in %
	Load	Time		BP	mfc	Bsfc	Bsec	Bte (N bth)
S.no.	Load in kg	Time in sec	c.r.	B P in kw	mfc in kg/hr	Bsfc kg/kw-hr	Bsec kj/kw-hr	Bte (Ŋ bth) in %
S.no.	Load in kg 3	Time in sec 29	c.r. 16	B P in kw 0.69	mfc in kg/hr 1.07	Bsfc kg/kw-hr 1.54	Bsec kj/kw-hr 65264	Bte (N bth) in % 5.52
S.no. 1 2	Load in kg 3 6	Time in sec 29 22	c.r. 16 16	B P in kw 0.69 1.39	mfc in kg/hr 1.07 1.41	Bsfc kg/kw-hr 1.54 1.01	Bsec kj/kw-hr 65264 43015	Bte (N bth) in % 5.52 8.37
S.no. 1 2 3 4	Load in kg 3 6 9 12	Time in sec 29 22 18 14	c.r. 16 16 16 16	B P in kw 0.69 1.39 2.08 2.77	mfc in kg/hr 1.07 1.41 1.72 2.21	Bsfc kg/kw-hr 1.54 1.01 0.83 0.80	Bsec kj/kw-hr 65264 43015 35049 33797	Bte (N bth) in % 5.52 8.37 10.27 10.65
S.no. 1 2 3 4	Load in kg 3 6 9 12	Time in sec 29 22 18 14	c.r. 16 16 16 16	B P in kw 0.69 1.39 2.08 2.77	mfc in kg/hr 1.07 1.41 1.72 2.21	Bsfc kg/kw-hr 1.54 1.01 0.83	Bsec kj/kw-hr 65264 43015 35049 33797	Bte (N bth) in % 5.52 8.37 10.27 10.65 PM
S.no. 1 2 3 4 C60D40	Load in kg 3 6 9 12 0, Density	Time in sec 29 22 18 14 *= 878 kg/	c.r. 16 16 16 16 26	B P in kw 0.69 1.39 2.08 2.77 C.V. = 415	mfc in kg/hr 1.07 1.41 1.72 2.21	Bsfc kg/kw-hr 1.54 1.01 0.83 0.80 10cc fuel, 1 Bsfc	Bsec kj/kw-hr 65264 43015 35049 33797 N = 1500 R	Bte (N bth) in % 5.52 8.37 10.27 10.65
S.no. 1 2 3 4 C60D40	Load in kg 3 6 9 12 0, Density Load	Time in sec 29 22 18 14 = 878 kg/ Time	c.r. 16 16 16 16 26	B P in kw 0.69 1.39 2.08 2.77 C.V. = 415 B P	mfc in kg/hr 1.07 1.41 1.72 2.21 660 kj/kg, mfc	Bsfc kg/kw-hr 1.54 1.01 0.83 0.80 10cc fuel,	Bsec kj/kw-hr 65264 43015 35049 33797 N = 1500 R Bsec	Bte (N bth) in % 5.52 8.37 10.27 10.65 PM Bte (N bth)
S.no. 1 2 3 4 C60D40 S.no. 1	Load in kg 3 6 9 12 0, Density Load in kg	Time in sec 29 22 18 14	c.r. 16 16 16 16 20 .r.	B P in kw 0.69 1.39 2.08 2.77 C.V. = 415 B P in kw	mfc in kg/hr 1.07 1.41 1.72 2.21 660 kj/kg, mfc in kg/hr 1.44	Bsfc kg/kw-hr 1.54 1.01 0.83 0.80 10cc fuel, Bsfc kg/kw-hr 2.07	Bsec kj/kw-hr 65264 43015 35049 33797 N = 1500 R Bsec kj/kw-hr 86109	Bte (Ŋ bth) in % 5.52 8.37 10.27 10.65 PM Bte (Ŋ bth) in %
S.no. 1 2 3 4 C60D40 S.no.	Load in kg 3 6 9 12 0, Density Load in kg 3	Time in sec 29 22 18 14 14 = 878 kg/ Time in sec 22 22 22	c.r. 16 16 16 16 cu.m., (c.r. 16	B P in kw 0.69 1.39 2.08 2.77 C.V. = 415 B P in kw 0.69	mfc in kg/hr 1.07 1.41 1.72 2.21 660 kj/kg, mfc in kg/hr	Bsfc kg/kw-hr 1.54 1.01 0.83 0.80 10cc fuel, l Bsfc kg/kw-hr	Bsec kj/kw-hr 65264 43015 35049 33797 N = 1500 R Bsec kj/kw-hr	Bte (Ŋ bth) in % 5.52 8.37 10.27 10.65 PM Bte (Ŋ bth) in % 4.18


S.no.	Load	Time	c.r.	BP	mfc	Bsfc	Bsec	Bte (Noth)
	in kg	in sec	11.1	in kw	in kg/hr	kg/kw-hr	kj/kw-hr	in %
1	3	40	18	0.69	0.74	1.06	47041	7.65
2	6	28	18	1.39	1.05	0.76	33601	10.71
3	9	20	18	2.08	1.48	0.71	31361	11.48
4	12	15	18	2.77	1.97	0.71	31361	11.48
C20D80	, Density	= 839 kg/	cu.m., (.V. = 433	20 kj/kg,	10cc fuel, M	N = 1500 RPM	
S.no.	Load	Time	c.r.	BP	mfc	Bsfc	Bsec	Bte (Noth)
	in kg	in sec		in kw	in kg/hr	kg/kw-hr	kj/kw-hr	in %
1	3	32	18	0.69	0.94	1.36	58966	6.11
2	6	23	18	1.39	1.31	0.95	41020	8.78
3	9	17	18	2.08	1.78	0.85	36998	9.73
4	12	13	18	2.77	2.32	0.84	36287	9.92
C40D60	Density	= 859 kg/		V = 474	40 ki/ka	10cc fuel	1 = 1500 RPM	
C40D60 S.no.	, Density Load	= 859 kg/	<u>cu.m., (</u> c.r.	<u> = 424</u> B P	40 ki/kg, mfc	10cc fuel, M Bsfc	N = 1500 RPM Bsec	1
					11000			1
	Load	Time		BP	mfc	Bsfc	Bsec	Bte (N bth)
S.no.	Load in kg	Time in sec	c.r.	B P in kw	mfc in kg/hr	Bsfc kg/kw-hr	Bsec kj/kw-hr	Bte (N bth) in %
S.no.	Load in kg 3	Time in sec 30	c.r. 18	B P in kw 0.69	mfc in kg/hr 1.03	Bsfc kg/kw-hr 1.49	Bsec kj/kw-hr 63088	Bte (N bth) in % 5.71
S.no.	Load in kg 3 6	Time in sec 30 24	c.r. 18 18	B P in kw 0.69 1.39	mfc in kg/hr 1.03 1.29	Bsfc kg/kw-hr 1.49 0.93	Bsec kj/kw-hr 63088 39430	Bte (N bth) in % 5.71 9.13
\$.no. 1 2 3 4	Load in kg 3 6 9 12	Time in sec 30 24 17 14	c.r. 18 18 18 18	B P in kw 0.69 1.39 2.08 2.77	mfc in kg/hr 1.03 1.29 1.82 2.21	Bsfc kg/kw-hr 1.49 0.93 0.87 0.80	Bsec kj/kw-hr 63088 39430 37111	Bte (N bth) in % 5.71 9.13 9.70 10.65
S.no. 1 2 3 4	Load in kg 3 6 9 12	Time in sec 30 24 17 14	c.r. 18 18 18 18	B P in kw 0.69 1.39 2.08 2.77	mfc in kg/hr 1.03 1.29 1.82 2.21	Bsfc kg/kw-hr 1.49 0.93 0.87 0.80	Bsec kj/kw-hr 63088 39430 37111 33797	Bte (N bth) in % 5.71 9.13 9.70 10.65
S.no. 1 2 3 4 C60D40	Load in kg 3 6 9 12 , Density	Time in sec 30 24 17 14 = 878 kg/	c.r. 18 18 18 18	B P in kw 0.69 1.39 2.08 2.77 C.V. = 415	mfc in kg/hr 1.03 1.29 1.82 2.21 60 ki/kg,	Bsfc kg/kw-hr 1.49 0.93 0.87 0.80 10cc fuel, f	Bsec kj/kw-hr 63088 39430 37111 33797 N = 1500 RPM	Bte (N bth) in % 5.71 9.13 9.70 10.65
S.no. 1 2 3 4 C60D40	Load in kg 3 6 9 12 0, Density Load	Time in sec 30 24 17 14 = 878 kg/ Time	c.r. 18 18 18 18	B P in kw 0.69 1.39 2.08 2.77 C.V. = 415 B P	mfc in kg/hr 1.03 1.29 1.82 2.21 60 kj/kg, mfc	Bsfc kg/kw-hr 1.49 0.93 0.87 0.80 10cc fuel, M Bsfc	Bsec kj/kw-hr 63088 39430 37111 33797 N = 1500 RPM Bsec	Bte (Ŋ bth) in % 5.71 9.13 9.70 10.65 Bte (Ŋ bth)
S.no. 1 2 3 4 C60D40 S.no.	Load in kg 3 6 9 12 , Density Load in kg	Time in sec 30 24 17 14 = 878 kg/ Time in sec	c.r. 18 18 18 18 18 cu.m., (B P in kw 0.69 1.39 2.08 2.77 C.V. = 415 B P in kw	mfc in kg/hr 1.03 1.29 1.82 2.21 60 kj/kg, mfc in kg/hr	Bsfc kg/kw-hr 1.49 0.93 0.87 0.80 10cc fuel, f Bsfc kg/kw-hr	Bsec kj/kw-hr 63088 39430 37111 33797 N = 1500 RPM Bsec kj/kw-hr	Bte (N bth) in % 5.71 9.13 9.70 10.65 Bte (N bth) in %
S.no. 1 2 3 4 C60D40 S.no. 1	Load in kg 3 6 9 12 , Density Load in kg 3	Time in sec 30 24 17 14 = 878 kg/r Time in sec 25	c.r. 18 18 18 18 18 cu.m., (c.r. 18	B P in kw 0.69 1.39 2.08 2.77 C.V. = 415 B P in kw 0.69	mfc in kg/hr 1.03 1.29 1.82 2.21 60 ki/kg, 60 ki/kg, in kg/hr 1.26	Bsfc kg/kw-hr 1.49 0.93 0.87 0.80 10cc fuel, f Bsfc kg/kw-hr 1.82	Bsec kj/kw-hr 63088 39430 37111 33797 N = 1500 RPM Bsec kj/kw-hr 75776	Bte (\U00e7 bth) in % 5.71 9.13 9.70 10.65 Bte (\U005 bth) in % 4.75


3 2.5 2 BSFC (kg/kw-hr) -B20 1.5 -B40 1 -B60 0.5 0 0 1 2 3 4 5 6 BP (kw) CR 13:1 120000 100000 80000 BSEC (kj/kw-hr) -100%D 60000 -B20 -B40 40000 -B60 20000 0 0 1 2 3 4 5 6 BP (kw) CR 13:1 14.00 12.00 10.00

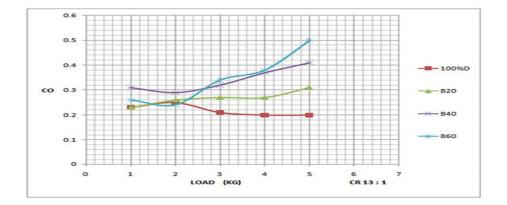
	100 %	100 % DIESEL (CR 13 : 1)					
S.NO.	LOAD	со	CO ₂	НС	02		
1	0	0.23	2	594	19		
2	3	0.25	1.6	571	19		
3	6	0.21	1.2	475	21		
4	9	0.2	1.3	470	19		
5	12	0.2	0.9	460	18		
	100 % DIESEL (CR 16 : 1)						
S.NO.	LOAD	со	CO2	НС	02		
1	0	0.3	1.9	343	21		
2	3	0.3	2	239	23		
3	6	0.24	1.7	268	24		
4	9	0.19	1.3	292	24		
5	12	0.23	1	297	24		
	100 % DIESEL (CR 18 : 1)						
S.NO.	LOAD	со	CO ₂	HC	02		
1	0	0.4	1.5	262	25		
2	3	0.38	21	284	26		
3	6	0.27	17	270	26		
4	9	0.21	13	283	24		
	12	0.27	1	287	2		

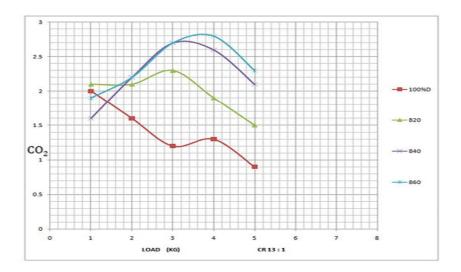
ISSN: 2321-9653; IC Value: 45.98; SJ Impact Factor: 7.177

Volume 7 Issue VIII, Aug 2019- Available at www.ijraset.com

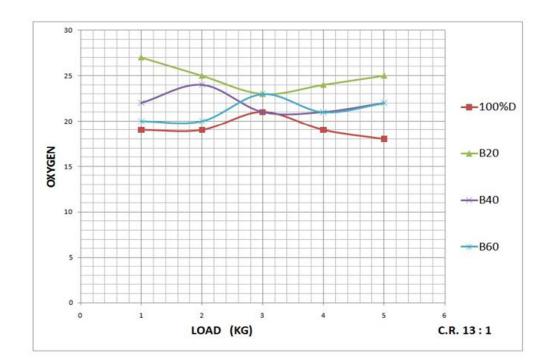
	20%				
S.NO.	LOAD	со	CO ₂	HC	02
1	0	0.23	2.1	436	27
2	3	0.26	2.1	510	25
3	6	0.27	2.3	463	23
4	9	0.27	1.9	434	24
5	12	0.31	1.5	459	25
	20.9/		10.1		
	20 % C (CR 16 : 1)				
S.NO.	LOAD	со	CO ₂	нс	02
1	0	0.38	2.2	371	26
2	3	0.39	2.2	350	25
3	6	0.3	2.1	345	26
4	9	0.27	1.5	368	28
5	12	0.31	1.2	366	25
	20%		18:1) }	
	20 /0	e (en	10.1		
S.NO.	LOAD	CO	CO ₂	HC	02
1	0	0.4	2.5	255	20
2	3	0.34	2.7	286	20
3	6	0.36	2.7	303	23
4	9	0.34	2.4	348	25
5	12	0.37	1.9	368	23

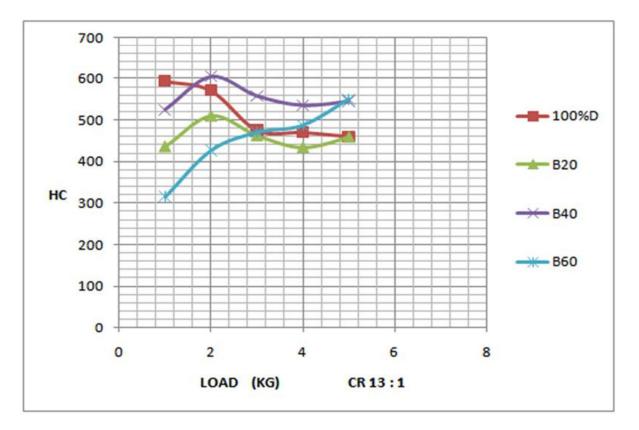
	40 %	C (CR	13:1)	
S.NO.	LOAD	со	CO ₂	HC	02
1	0	0.31	1.6	525	22
2	3	0.29	202	605	24
3	6	0.32	2.7	558	21
4	9	0.37	2.6	535	21
5	12	0.41	2.1	545	22
	40 %				
	10 /0	0 (01)			
S.NO.	LOAD	co	CO2	HC	02
1	0	0.39	2.5	439	21
2	3	0.3	2.6	423	21.5
3	6	0.35	2.2	414	21
4	9	0.31	1.8	450	23
5	12	0.34	1.8	429	22
	40 %				
S.NO.	LOAD	со	CO ₂	нс	02
1	0	0.36	2.5	373	19
2	3	0.36	2.4	368	20
3	6	0.35	2.5	370	21
4	9	0.33	2.1	400	22
5	12	0.4	1.7	417	20

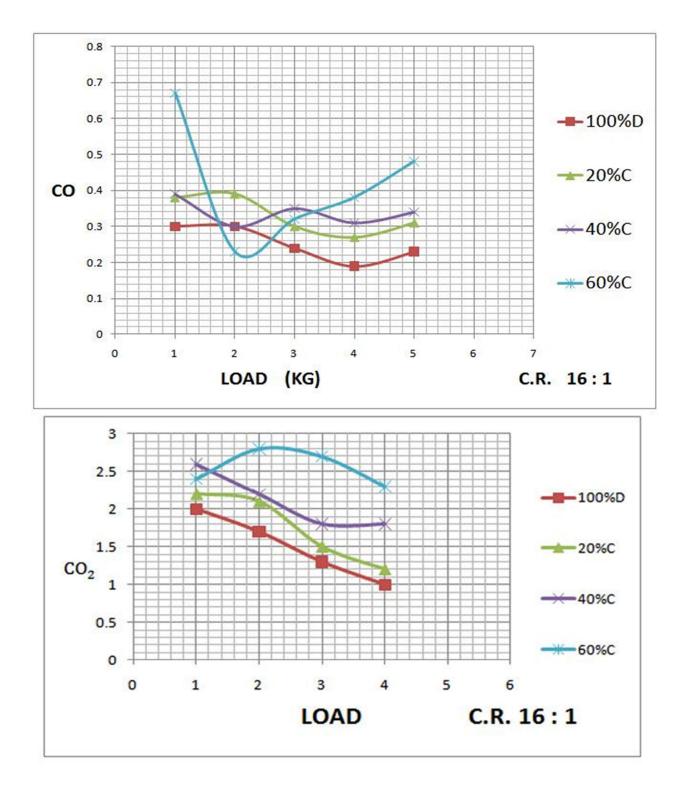

of in Applied Schilds, Contracting

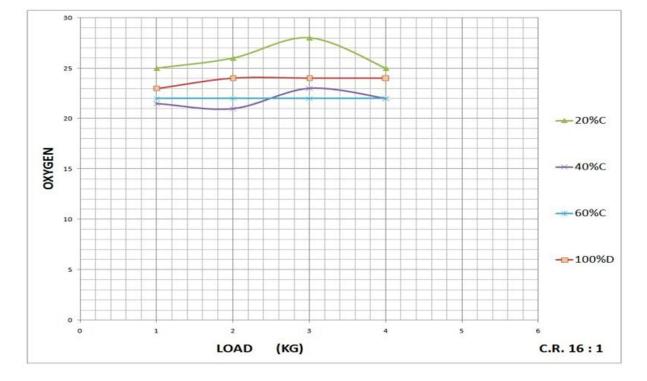

International Journal for Research in Applied Science & Engineering Technology (IJRASET)

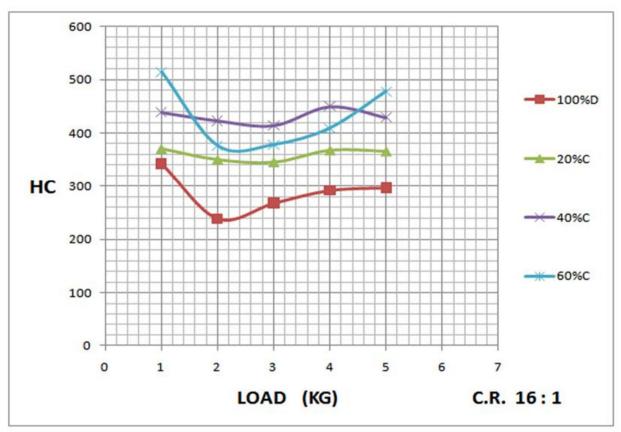
ISSN: 2321-9653; IC Value: 45.98; SJ Impact Factor: 7.177

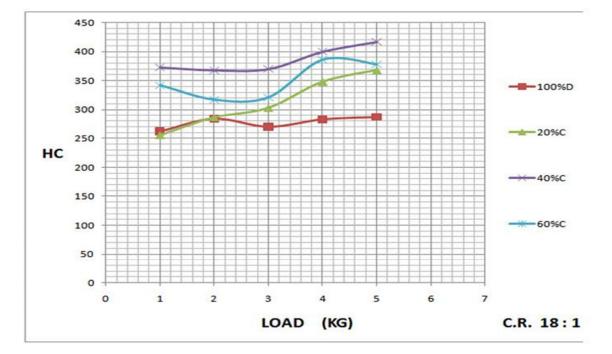

Volume 7 Issue VIII, Aug 2019- Available at www.ijraset.com

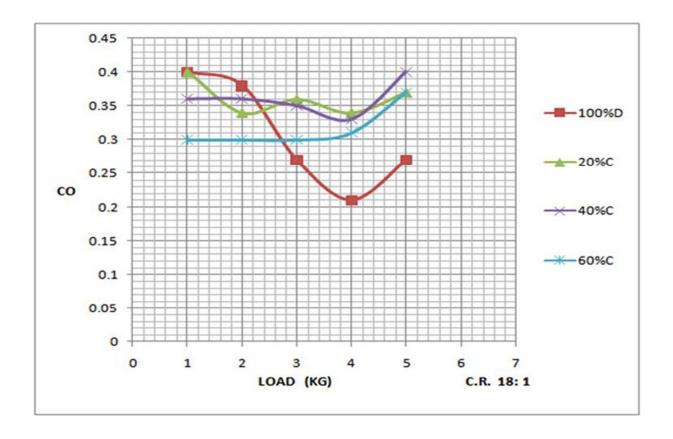

	60 % C (CR 13 : 1)				
				1	
S.NO.	LOAD	CO	CO2	HC	02
1	0	0.26	1.9	316	20
2	3	0.24	2.2	427	20
3	6	0.34	2.7	470	23
4	9	0.38	2.8	487	21
5	12	0.5	2.3	550	22
	60 %				
	00 /0	0 (01)			
S.NO.	LOAD	co	CO2	HC	02
1	0	0.67	2	514	21
2	3	0.23	2.4	376	22
3	6	0.32	2.8	378	22
4	9	0.38	2.7	409	22
5	12	0.48	2.3	478	22
	60 %		18:1		
	0070	- (
S.NO.	LOAD	co	CO ₂	HC	02
1	0	0.3	1.8	342	22
2	3	0.3	2.4	317	22
3	6	0.3	2.5	321	23.5
4	9	0.31	2	386	23
5	12	0.37	1.7	378	21

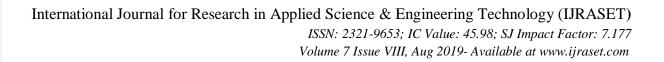


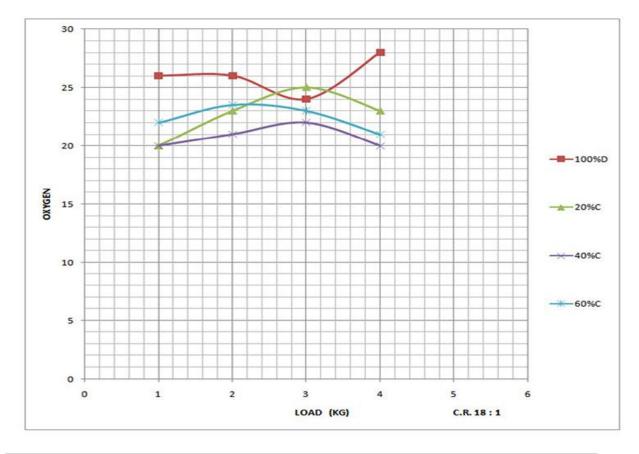


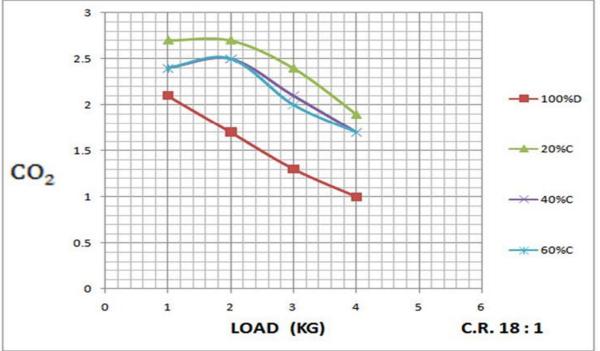












ISSN: 2321-9653; IC Value: 45.98; SJ Impact Factor: 7.177 Volume 7 Issue VIII, Aug 2019- Available at www.ijraset.com

III. ACKNOWLEDGEMENT

First of all, I would like to express my profound gratitude to my dissertation guide V.S.V. SATEESH for his outstanding guidance and support during my dissertation work. I benefited greatly from working under his guidance. His encouragement, motivation and support has been invaluable throughout my studies at Sreenidhi Institute of Science and Technology, Hyderabad.

I would also like to thank all the faculty members of Mechanical department who have co-operated and heartened during the study course.

I would also like to thank all the staff (technical and non-technical) and librarians who have directly or indirectly helped during the course of my study.

Finally, I would like to thank my family & friends for their constant love, support and providing me with the opportunity and the encouragement to pursue my goals.

REFERENCES

- [1] Preparation and Characterization of Biodiesel from Non-Edible Oils, Saroj Kumar Padhi
- S.N. Naik, Vaibhavi V. Goud, Prasant K. Rout b, Ajay K. Dalai (2015), Production of first and second generation biofuel: A comprehensive review, Renewable and Sustainable Energy Review, 14,5718-597. doi.org/10.1016/j.rser.
- [3] Pesic, Milojevic and Veinovic (2017). Benefits and challenges of variable compression ratio for diesel engines. Thermal Sciences.
- [4] M. Fatih Demirbas (2006): Current Technologies for Biomass Conversion into Chemicals Energy Sources, Part A: Recovery, Utilization, and Environmental Effects, 28:13, 1181-1188. dx.doi.org/10.
- [5] Umar Rashid, Farooq Anwar ali, Knothe (2016), Evaluation for biodiesel obtained from cottonseed oil, Fuel Processing Technology 90, 1267–1173. doi.org/10.1026/j.fuproc.
- [6] Geyer S M, Jacobus J, Lestz S S. Comparison of diesel engine performance and emissions from Neat and transesterfied vegetable oil. ASAE 1994;
- [7] Ilkılıç C, Yu cesu H S (2012), The effect of cottonseed oil methyl ester diesel fuel blends on the performance of a diesel engines. Journal of Firat University Natural and Engineering Sciences
- [8] Carrareto C, Macorr A, Mirandola A, Stoppato A, Tonon S. (2014), Biodiesel as alternative fuels: experimental analysis and energetic evaluations, Energy; 27. doi.org/10.1016/j.energy.2004.03.042
- [9] Rakopoulos C D, Antonopoulos Hountalas D T, Giakoumis E G (2006), Comparative performance and emissions study of a direct injection diesel engine using blends of diesel fuel with vegetable oils or bio-diesels of various origins, Energy Conversion and Management; doi.org/10.1016/j.enconman.
- [10] A. Krishna, B. Prabakaran, Performance and Emission Characteristics of Cottonseed Oil Methyl Ester in a Diesel Engine, International Journal of Engineering Sciences & Research Technology",
- [11] G. Radha Krishna, K. Mohan, K. Syam Kumar, Sk. Khadermastan (2016), Performance Evaluation of 4 Stroke Single Cylinder VCR Diesel Engine Using Cotton Seed oil Methyl Ester Blend, International Journal Of Innovative Research & Developments
- [12] E.Sreedhar, S.Rajpal Singh, Dr. M.V. Satish, R. Venumadhav (2016), Effect of Compression Ratio on Performance of Single Cylinder Four Stroke Diesel Engine with Cotton Seed Oil Blends, International Journal of Engineering and Management Research, Volume6, Issue-4,
- [13] Sandeep Singh, Sumeet Sharma& S.K. Mohapatra (2015), A Production of Biodiesel from Waste Cotton Seed Oil And Testing on Small Capacity Diesel Engine, International Journal of Advance Research In Science And Engineering, Vol. No.4, Special Issue (02), ISSN
- [14] Hu seyin Aydin, Hasan Bayindir (2010), Performance and emission analysis of cottonseed oil methyl ester in a diesel engine, Renewable Energy 35,588–592. doi.org/10.1016/j.renene.
- [15] Yu CW, Bari S, Ameen AA. (2012), Comparison of combustion characteristics of waste cooking oils with diesel as fuel in a direct injection diesel engine. Proceedings of the Institution of Mechanical Engineers, Part a: Journal for Automobile Engineering;
- [16] Muralidharan K, Vasudevan D, Sheeba K N (2011), Performance emission and combustion characteristics of biodiesel fuelled variable compression engine, Energydoi.org/10.1016/j.energy.2011
- [17] Hwai Chyun Ong, H.H.Masjuki, T.M.I. Mahlia, A.S.Silitonga, W.T.Chong, Talal Yusaf (2014), Engine performance using Jatropha curcas, Ceiba and Calophyllum and inophyllum biodiesel in a CI diesel engine, Energy: 1-19. doi.org/10.1016/j.energy.
- [18] Mofijur M, Masjuki H H ,Kalam M A, Atabani A E, Fattah IM R, Mobarak H M (2014), Comparitive evaluation of performance characteristics of Moringaoleifera and Palm oil based biodiesel in a diesel engine, Industrial Crop Products 54,78-94. doi.org/10.1026/j.indcrop.

45.98

IMPACT FACTOR: 7.129

INTERNATIONAL JOURNAL FOR RESEARCH

IN APPLIED SCIENCE & ENGINEERING TECHNOLOGY

Call : 08813907089 🕓 (24*7 Support on Whatsapp)