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Abstract: Thermoelastic properties of solids at high pressures are studied using various equations of state (EOS) such as 
Eularian Birch-Murnaghan EOS, Poirier-Tarantola logarithmic EOS and the generalized Vinet-Rydberg EOS. We have 
determined the pressure derivatives of bulk modulus upto third order which are useful for predicting the Grüneisen parameter 
and its volume derivatives. Expressions have been obtained for the derivative properties based on different equations of state, 
and extrapolated to the limit of extreme compression. It is found that all the three equations lead to a common relationship 
between second and third pressure derivatives of bulk modulus in the limit of extreme compression. 
Keywords: equations of state, pressure derivatives of bulk modulus, Grüneisen parameter, extreme compression behavior. PACS: 
64.70 DV, 62.50+P; 65.40-b 

I. INTRODUCTION 
Equations of state at high pressures have been extremely useful for studying the thermoelastic properties of solids [1-3]. Bulk 
modulus and its pressure derivatives are important physical quantities for understanding the thermoelastic properties [4, 5] such as 
the Grüneisen parameter  and its volume derivatives.  is related to the thermal and elastic properties of materials by the formula [6, 
7]. 

                          
P

S

V

T

C
VKα 

C
VKα 

  γ       (1) 

Where  is the coefficient of volume thermal expansion, KT and KS are isothermal and adiabatic bulk modulus, CV and CP are the 
specific heats at constant pressure and constant volume respectively. 
The second Grüneisen constant q used in the literature is defined as [8]. 

                                   
TV ln 

 ln   q 












               (2) 

The third order Grüneisen parameter is defined as 
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In order to emphasize the importance of q and  in determining higher order thermoelastic properties we refer to the following 
thermodynamic identities [7]. 
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where 
 S is the adiabatic Anderson-Grüneisen parameter 
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 T is the isothermal Anderson-Grüneisen parameter 
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                                              C '

S  = ( ln CV/ ln V)S ,               (11) 

 and  

                                              C '

T  = ( ln CV/ ln V)T                (12) 

Thus q and  appearing in Eqs (5) – (8) are useful parameters reduced to investigate higher order thermoelastic properties. We make 
use of the generalized free-volume formula for determining q and . 

II. GENERALIZED FREE-VOLUME FORMULATION 
According to the generalized free-volume formula [6, 9],  is related to pressure P, isothermal bulk modulus K and its pressure 
derivative ܭᇱas follows: 

                                                                    γ=
ቆK'

2 ቇ-ቀ1
6ቁ-ቀ t

3ቁቀ1- P
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                         (13) 

The parameter t takes different values for different formulations of , based on different approximation. Thus t = 0 for Slater’s 
formula [10], t = 1 for the formulation developed by Dugdale and MacDonald [11], t = 2 yields the free-volume formula [9], ad t = 
2.35 resulted in a molecular dynamical calculation by Barton and Stacey [12]. The assumptions and approximations on which 
Equation (13) is based, have been reviewed in a comprehensive manner by Stacey and Davis [6]. The pressure dependence or 
volume dependence of  can be studied with the help of Eq. [13] using different equations of state [8, 13]. Expressions for the 
volume dependence of λ, represented by q and  have been derived from Eq. (13) considering t to be independent of pressure, i.e. 
dt/dp = 0. It has been found by Stacey and Davis [6] that  varies slowly with pressure, and constant  might be a good 
approximation. Although there is no fundamental reason for believing that  is constant, it is much better assumption constant q 
often assumed in mineral physics [14]. 
It is more convenient to rewrite Eq. (13) in an equivalent form as follows (13). 
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The following equations are then obtained from the differentiation of Eq. (13) 
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Eqs. (16) and (17) yield 
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Values of γ, q and  can be calculate by knowing the pressure derivatives of bulk modulus. These pressure derivatives can be 
determined with the help of equations of state. 
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III. ANALYSIS BASED ON EQUATIONS OF STATE 
 Higher pressure derivatives of bulk modulus are determined here using some important equations of state given below: 
 
A. Birch-Murnaghan Fourth Order EOS 
This EOS has been derived from the Eulerian strain theory [15]. The expressions for P, K, ܭᇱ, KKᇱᇱ and KଶKᇱᇱᇱ obtained from this 
equation of state are given below: 
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where x = V/Vo and 
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B. Poirier-Tarantola Logarithmic Fourth-Order EOS 
Poirier and Tarantola [16] have obtained logarithmic EOS using the Hencky strain which is represented by (113) ( ln V/Vo). The 
expressions based on this EOS s follows: 
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C. Generalized Vinet-Rydberg Eos 
Stacey [7] has generalized the Vinet EOS, so as to make it compatible with infinite pressure value Kஶ

ᇱ , for the pressure derivative of 
bulk modulus the equation thus formulated by Stacey is known is the generalized Rydberg EOS. 
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, far Kஶ
ᇱ = 2/3, Eq. (33) reduces to the original, Rydberg EOS. 

The Birch-Murnagham EOS, the logarithmic EOS and the generalized Rydberg EOS can be written in the following form                                                      
                                                    K/P  = ܭஶᇱ +F(x)                                          (38) 
Differentiating   Eq (38) with the respect to ‘P’  successfully 
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                          [ (KKᇱᇱ+Kᇱᇱ)(K/P)- 3Kᇱ (K/P)² +2(K/P)³= xFᇱ(x)+x²Fᇱᇱ (x)           (40) 
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Where  x =V/V₀  
In case of birch murnagham fourth order EOS the value of F(x) is 
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In case of the logarithmic fourth –order EOS the value of F(x) is 
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In case of the generalized Rydberg EOS the value of F(x) is  
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IV. RESULTS AND DISCUSSIONS 
We can derive expressions for the derivatives of F(x) such as )x(F , )x(F  and )x(F  by using Eqs. (42-44). In the limit V0, 
P, K, but their ratio P/K remains finite such that (P/K) = 1/Kஶ

ᇱ . Also (1–Kᇱ/P), KKᇱᇱ and K2Kᇱᇱᇱ tend to zero in the limit of 
infinite pressure, but their ratios KKᇱᇱ(1–KᇱP/K) and K2Kᇱᇱᇱ/KKᇱᇱ  remain finite [4,20]. At extreme compression x 0, we have 
F(x)0, x )x(F 0, x2 )x(F  0 for all the equations of state based on Eqs. (38-41) using the calculus, we have 
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In the extreme compression limit Eqs. (39) and (40) gives 
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Eqs. (40) and (41) gives 
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Eqs. (45 – 47) then yield 
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The Birch-Murnaghan Fourth Order EOS gives using Eqs. (19-23) 
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The logarithmic fourth order EOS using Eqs. (28-32) 
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The generalized Vinet-Rydberg EOS using Eqs. (33-37) gives 
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All these equations of states satisfies the common relation (48). This relationship can be useful for investigating further the 
thermoelastic properties of solids at high pressures [4,6,20]. 
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