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Abstract: The singlet and non-singlet structure functions have been obtained by solving DGLAP evolution equations in leading 
order (LO) at the small-x limit. A Taylor series expansion has been used and then the method of characteristics to solve the 
evolution equations. Also calculated t and x evolutions of deuteron as well as non-singlet (combination of proton and neutron) 
structure functions and the results are compared with the New Muon Collaboration (NMC), E665, CLAS and NNPDF 
collaboration data. 

I. INTRODUCTION 
The high-energy lepton-nucleon scattering has served as a sensitive probe for the substructure of the proton and neutron. 
Experiments with high energy electrons, muons and neutrinos have been used to characterize the parton substructure of the nucleon 
and to establish the current theory of the strong interaction ���quantum chromodynamics. Observations of the experiments are 
scaling violation for the unpolarized nucleon structure functions, the measurement of the strong coupling constant  2

S Qα , the 

confirmation of numerous QCD sum rules and the extraction of the parton distributions inside the nucleon. The parton distribution 
functions (PDFs) depend on two kinematical variables x and Q2. Their Q2 dependence is called scaling violation, which is calculated 
by the DGLAP evolution equations [1-4] in the perturbative QCD region. The Q2 evolution equations are frequently used in 
describing high-energy hadron reactions. Because the PDFs vary significantly in the current accelerator-reaction range, Q2=1 GeV2 
to 105 GeV2, the Q2 dependence should be calculated accurately.  
It is well known that all information about the structure of hadrons participating in DIS comes from the hadronic structure functions. 
According to QCD, at small values of x and at large values of Q2 hadrons consist predominately of gluons and sea quarks. In that 
region, the DGLAP evolution equations give t [= ln (Q2/Λ2), Λ is the QCD cut off parameter] and x evolutions of structure 
functions. Hence the solutions of DGLAP evolution equations give quark and gluon structure functions that produce ultimately 
proton, neutron and deuteron structure functions. 
The solutions of the unpolarized DGLAP equation for the quantum chromodynamics evolution of parton distribution functions have 
been discussed considerably over the past years [5-13]. But exact analytical method with unique solution is not known. Here we will 
solve unpolarized DGLAP evolution equations  analytically by using method of characteristics and get unique solutions. Our results 
are compared with various experimental data.  

A. Theory 
The DGLAP evolution equations [1-4] in matrix form 
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where S
2F  and G are singlet and gluon structure functions respectively and qqP , qgP , gqP , ggP are splitting functions. For evolution 

of singlet structure function, the quark-quark splitting function qqP and gluon-quark splitting function qgP  have to be calculated and 

for non-singlet structure function, we have to calculate only quark-quark splitting function qqP , which can be expressed as [13] 
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where   xP 0
qq ,  xP1

qq and   xP 2
qq  are LO, NLO and NNLO splitting functions respectively. Again   represents the standard 

Mellin Convolution with the notation    
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Similarly, other splitting functions can be expressed. 

The strong coupling constant,  2
S Qα  is related with the β-function [13] as  

   





 4
S3

23
2

120
2

2
S

S α
64π
β

sα
16π

β
sα

4π
β

logQ
Qα

αβ ,  

with  

    























 32
2

0

2
1

3
0

2
0

1

0

2

t
1Oβ1logttlog

β
β

tβ
1

t
logt

β
β1

tβ
2

2π
Qα

, 

fC0 T
3
4N

3
11β  , 

fFfC
2
C1 N2CNN

3
10N

3
34β  , 

2
fC

2
fFf

2
CfCFf

2
F

3
C2 TN

27
158TC

9
44TN

27
1415TNC

9
205T2CN

54
2857β   , 

where Nc is the number of colour, Nf is the number of active flavour and Tf, CF are constants associated with the colour SU(3) 

group. We have set NC = 3, 
3
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 and ff N
2
1T  . Here 0β , 1β  and 2β are the one loop, two loop and three loop 

corrections to the QCD β - function. We can neglect 1β  and 2β  in LO. Considering splitting functions [14, 15, 16], the DGLAP 
evolution equations for singlet and non-singlet structure functions in LO in standard form are 
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 Let us introduce the variable u = 1 � ω  and note that  
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Since x< ω <1, so 0<u<1��x and hence the series (3.5) is convergent for |u|<1. 

So, we can use Taylor’s series expansion in 
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Since x is small in our region of discussion, the terms containing x2 and higher powers of x can be neglected and we can rewrite 
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Here if we introduce the higher order terms in Taylor’s expansion, then also there is no modification of the solution. Because when 
we solve the second order partial differential equation by Monges Method [17], which will be produced by introducing the second 
order terms in Taylor expansion, then ultimately it becomes the first order as before due to the form of the DGLAP equation. 
Similarly by introducing more terms in Taylor expansion, we hope for these cases also the terms can be neglected due to still 
smaller values of x  [18-21]. 
Using equations (6a) and (6b) and performing u-integrations we get 
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Putting equations (7a) and (7b) in equation (3) we get  
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In order to solve equation (8), we need to relate the singlet structure function  tx,FS
2 with the gluon structure function  tx,G . 

For small-x and high-Q2, the gluon is expected to be more dominant than the sea quark. But for lower-Q2, there is no such clear cut 
distinction between the two [18, 22]. Hence for simplicity, let us assume 
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     tx,F xktx,G S
2 ,                                                                                                   (9) 

where k(x) is a suitable function of x or may be a constant. Here we may assume k(x) = k, axb, ce� dx where k, a, b, c and d are 
suitable parameters which can be determined by phenomenological analysis. But the possibility of the breakdown of relation also 
can not be ruled out [18, 21, 22]. Now equation (8) gives  
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where     

    42f1 kAAAxL  ,                                                                                              (11a) 

  


















 431f1 A
x
kkAAAxM .                                                                            (11b) 

To introduce Method of characteristics, let us consider two new variables S and τ instead of x and t, such that 
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which are known as characteristic equations [23].  Again according to the rule of PDE we have 
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Thus putting equations (12a) and (12b) in equation (10), we get  
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For t-evolution, structure function varies with t remaining x constant [22]. Thus the equation (14) becomes 
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Similarly for x-evolution, structure function varies with x remaining t constant. Thus the equation (14) becomes 
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Proceeding in the same way, we get t and x evolutions of non-singlet structure function from equation (3.4) as 
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The deuteron, proton and neutron structure functions measured in DIS can be written in terms of singlet and non-singlet quark 
distribution functions [15] as 
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The t and x-evolution of deuteron structure functions in LO can be obtained by putting equations (15) and (16) respectively in the 
equation (18a) as 
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Equations (19a) and (19b) are used in our phenomenological work for deuteron structure function and equations (17a) and (17b) are 
used for non-singlet structure function which is the combination of proton and deuteron or neutron related by the relations (18d) or 
(18e). 
 



International Journal for Research in Applied Science & Engineering Technology (IJRASET) 
                                                                                           ISSN: 2321-9653; IC Value: 45.98; SJ Impact Factor: 7.429 

                                                                                                                Volume 8 Issue IV Apr 2020- Available at www.ijraset.com 
     

 504 ©IJRASET: All Rights are Reserved 

II. RESULTS AND DISCUSSIONS 

Here we compare our results of t and x-evolution of deuteron structure function  tx,Fd
2  as well as non-singlet structure function 

 tx,FNS
2 measured by the NMC in muon-deuteron DIS [24], Fermilab E665 data in muon-deuteron DIS [25], CLAS Collaboration 

from the CEBAF Large Acceptance Spectrometer (CLAS) at the Thomas Jefferson National Accelerator Facility [26, 27] as well as 
NNPDF Collaboration [28, 29 30] based on Artificial Neural Networks by considering their parameterization from NMC and 

BCDMS [31] data. We consider the QCD cut-off parameter MS = 0.323 GeV for  2
ZS M = 0.119 ± 0.002 [32]. In all plots, solid 

curves are our best fit results. Experimental data and parameterization are given with vertical upper and lower error bars for total 
uncertainties of statistical and systematic errors. Structure functions at lowest-Q2 for t-evolutions and at largest-x for x-evolutions 
are taken as input functions. 
The NMC data consist of four data sets for the proton and the deuteron structure functions corresponding to beam energies of 90 
GeV2, 120 GeV2, 200 GeV2 and 280 GeV2. They cover the kinematics range 0.002 ≤ x ≤ 0.60 and 0.5 GeV2 ≤ Q2 ≤ 75 GeV2. Again 
E665 data were taken at Fermilab in inelastic muon scattering with average beam energy of 470 GeV2. Similarly in CLAS 
Collaboration data, measurement of the deuteron structure function from the inclusive cross sections measured in interactions of 
electrons with a liquid deuterium target. The data cover Q2 values from 0.4 to 6 GeV2. The data are taken from the CLAS internal 
note from Osipenka et al. The authors combine these data with other world data to study the Q2 evolution of its moments and higher 
twist effects [26]. On the other hand, the BCDMS data consist of four data sets for the proton structure function, corresponding to 
beam energies of 100 GeV2, 120 GeV2, 200 GeV2 and 280 GeV2 and three data sets for the deuteron structure function 
corresponding to beam energies of 120 GeV2, 200 GeV2 and 280 GeV2. They cover the kinematic range of 0.06 ≤ x ≤ 0.80 and 7 
GeV2 ≤ Q2 ≤ 280 GeV2. For our phenomenological work, we consider the ranges as 0.0045 ≤ x      ≤ 0.180 and 0.75 GeV2 ≤ Q2 ≤ 
48.0 GeV2 for NMC data, 0.01 ≤ x ≤ 0.069 and 1.496 GeV2 ≤ Q2 ≤ 13.391 GeV2 for E665 data, 0.1225 ≤ x ≤ 0.9055 and 5.075 GeV2 
≤ Q2 ≤ 5.925 GeV2 for CLAS collaboration, and also 0.001 ≤ x ≤ 0.80 and 1 GeV2 ≤ Q2 ≤ 100 GeV2 for NNPDF collaboration 
respectively.  

In figures 1, we have plotted computed values of  tx,Fd
2

 against Q2 values for x = 0.0045 and x = 0.008 considering k(x) = k, a 
constant and compared with NMC data. It is found that agreements of our results with data are best for 1.03 ≤ k ≤ 1.6 in the entire 
range of our discussion.   

  
Figure 1: Comparison of t-evolution of deuteron structure function in LO with NMC data  
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Figure 2: Sensitivity of parameter k in t-evolutions 

In figures 3, for x-evolution, we have plotted computed values of  tx,Fd
2

 against the x values for a fixed Q2 with considering k(x) 
= k, as a constant and compared with NMC data. Here we have plotted the graphs for Q2 = 11.5 and 27 GeV2 for the range of 0.025 
≤ x ≤ 0.14. The best-fit curves get for the range of 1.0 ≤ k ≤ 1.3 and as Q2 increases the k value also increases. 

 
Figure 3: Comparing x-evolution of deuteron structure function in LO with NMC data  
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In figure 4, we have plotted computed values of  tx,Fd
2

 against the x values for a fixed Q2 with k(x)=k, a constant and our results 
are compared with CLAS collaboration data.  Though our theory on the DGLAP evolution equation are satisfied at high-Q2 and 
small-x, but CLAS data are available at comparably smaller-Q2 and higher-x. Thus our results are not properly satisfied with entire 
range of CLAS collaboration data. The best-fit curves are for 0.6 ≤ k ≤ 1.0 with high-Q2 and small-x ranges that available in CLAS 
collaboration.  

    
Figure 4: Comparing x-evolution of deuteron structure functions in LO with CLAS Collaboration data 

In figures 5, we have plotted computed values of  tx,Fd
2

 against the Q2 values for a fixed x and our results are compared with 
NNPDF collaboration data where the range of data used to train the 1000 nets which produced the results in ranges 0.003 ≤ x ≤ 0.8; 
0.5 GeV2 ≤ Q2 ≤ 280 GeV2 for the deuteron and non-singlet structure functions. Here we have considered k(x) = k, a constant and 
best-fit curves are for k = 1.1.  
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Figure 5: Comparing t-evolution of deuteron structure function in LO with NNPDF collaboration data  

In figures 6, for x-evolution, we have plotted computed values of  tx,Fd
2

 against the x values for a fixed Q2 with k(x) as a constant 

and our results are compared with NNPDF collaboration data.  The best-fit curves are for      k(x) = k = 1.2.  
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In figures 7, we have plotted computed values of  tx,FNS
2

 against Q2 values for fix values of x at 0.01, 0.017, 0.024, 0.035 for 
E665 data and at 0.0045, 0.008, 0.0125, 0.0175 for NMC data. The computed values are plotted against the corresponding values of 
Q2 for the range from 1.496 GeV2 to 13.396 GeV2 for E665 data and from 0.75 GeV2 to 7.0 GeV2 for NMC data.  

   
Figure 7: t- evolution of non-singlet structure functions in LO compared with E665 and NMC data. Value of each data point is 

increased by adding 0.5i and 0.3i, where     i = 0, 1, 2, 3, … 
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2  against x are plotted for fix Q2 at 5.236 GeV2, 7.161 GeV2, 9.795 GeV2, 13.391 

GeV2 for E665 data and at 9.0 GeV2, 11.5 GeV2, 15.0 GeV2, 20.0 GeV2 for NMC data. The data at highest values of x are taken as 
input values.  

 
Figure 8: x-evolution of non-singlet structure functions in LO compared with E665 and NMC data. Value of each data point is 

increased by adding 0.5i and 0.2i, where     i = 0, 1, 2, 3, … 

0

0.9

1.8

2.7

0 6 12 18

F 2
N

S +
0.

5i
 

Q2(GeV2) 

(a) t-evolution (E665 Data) 

x=0.017 

x=0.01 

x=0.024 

x=0.035 

0

0.6

1.2

1.8

0 2.5 5 7.5Q2 (GeV2) 

x=0.0045 

x=0.0175 

x=0.008 

x=0.0125 

(b) t-evolution (NMC) 

0

0.9

1.8

2.7

0 0.025 0.05 0.075

F 2
N

S +
0.

5i
 

x 

(a) x-evolution ( E665) 

Q2=5.236  
     GeV2 

Q2=7.161 
    GeV2 

Q2=13.391   
     GeV2 

Q2=9.795  

0.2

0.6

1

1.4

0 0.05 0.1 0.15x 

Q2=20 GeV2 

Q2=9 GeV2 

Q2=11.5 GeV2 

Q2=15 GeV2 

(b) x-evolution (NMC) 



International Journal for Research in Applied Science & Engineering Technology (IJRASET) 
                                                                                           ISSN: 2321-9653; IC Value: 45.98; SJ Impact Factor: 7.429 

                                                                                                                Volume 8 Issue IV Apr 2020- Available at www.ijraset.com 
     

 509 ©IJRASET: All Rights are Reserved 

III. CONCLUSION 
The unpolarized DGLAP evolution equations have been solved for singlet and non-singlet structure functions in LO by using 
method of characteristics. Also have derived the t and x-evolutions of deuteron as well as non-singlet structure functions and results 
are compared with NMC, E665, CLAS collaboration data and NNPDF parameterization results. It is seen that structure functions 
increase as Q2 increases from lower to higher values and decrease with x from higher to lower values. Results are in good agreement 
with these data sets especially at small-x and high-Q2 region. 
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