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Abstract: This research proposes a discrete time controller design for the pitch channel for a two degree of freedom helicopter 
using the root locus method. The proposed lead-lag controller uses zero and pole placement to increase the stability and 
controllability of the system. Simulation is provided to insure the validity of the proposed controller. 
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I. INTRODUCTION 
The two degree of freedom (2 DOF) helicopter consists of a fixed base with two propellers that are driven by DC motors [1]. One 
propeller controls the elevation of the helicopter nose about the pitch axis and the other propeller controls the side to side motion 
about the yaw axis [1-2]. High resolution encoders are used to measure the pitch and yaw angles of the system. The 2-DOF helicopter 
recreates a behavior that is a subset of a real helicopter dynamics. The helicopter model is a Twin Rotor Multiple-inputs Multiple-
outputs System. Helicopters has several non-linarites and open loop unstable dynamics as well as significant cross-coupling between 
their control channels which makes the control of such multi-input multi-output (MIMO) system a challenging task [3]. These non-
linearities and model uncertainties make designing a controller for helicopters an open research problem [2, 3]. The interest in this 
research problem has increased recently due to their potential military and civil applications [4]. Various approaches for stabilization 
and tracking control of helicopters have been reported in several literatures. A fuzzy control technique was presented in [3], a State 
Dependent Riccati Equation (SDRE) methodology in [5], back-stepping based approach in [5], and linear and non linear feedback 
control was presented in [6] among others.  
In this project the root locus method was used to design a lead lag controller using the linearized method of the system. Section 2 
gives the system description and modeling, section 3 gives the design specification, section 4 gives the problem formulation and 
controller design, and section 4 gives the concluding remarks of the project. 

II. SYSTEM DYNAMICS & PROBLEM STATEMENT 
The two degrees of freedom (2DOF) helicopter system is a popular modeling tool due to its highly non-linear nature. The modeling 
and control tools of this system can be used in multiple areas such as aerospace [7, 8].  The system used in the model is a twin rotor 
single input single output system. The twin rotors are the yaw rotor and the pitch rotor which control the yaw and pitch of the system 
respectively. The system can be seen in figure 1. 

 
Figure 1: 2DOF helicopter system. 
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The free body diagram of the 2-DOF helicopter is illustrated in figure 2. The diagram illustrates the degrees of freedom for the 
helicopter using the two rotors. In this system the two degrees of freedom are around the yaw axis and pitch axis [9, 10]. The pitch 
angle increases positively, (ݐ)ߠ̇ > 0, when the nose is moved upwards, and the body rotates in the counter-clockwise (CCW) direction. 
The yaw angle increases positively, ߰(ݐ)̇  > 0 when the body rotates in the clockwise (CW) direction. When the pitch thrust force is 
positive the pitch increases, and when the yaw thrust force is positive the yaw increases [11].   

 
Figure 2: Simple free-body diagram of 2-DOF Helicopter. 

The thrust forces acting on the pitch and yaw axes from the front and back motors are then defined [12, 13]. The non-linear equations 
of motion for the system are derived. Linearization can be used to simplify the non-linear dynamics of the system about a set of 
preselected equilibrium conditions and presented in the form: 

ݔ̇ = ݔܣ +  ݑܤ
ݕ = ݔܥ  ݑܦ+

The (linearized) state–space equations describing the system are: 

(ݐ)ݔ̇ =  
0 1

−2.7451 −0.2829
0          0    
0          0   

0             0
0             0

0        1
0 −0.2701

 (ݐ)ݔ +  
0 0

37.2021
0

2.3892

3.5306
0

7.461

  (ݐ)ݑ 

 

(ݐ)ݕ =  ቂ1 0 0 0
0 0 1 0ቃ ݔ

 (ݐ)

 
Where:  

ݔ = ൦

ߠ
ߠ̇
߰
߰̇

൪ ݑ     , = ቂ
ݒ
௬ቃݒ ݕ        , =  ߰ߠ൨ 

The closed loop system presentation for the pitch channel is shown in figure 3. 

 
Figure 3: Closed loop system (pitch channel). 
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The transfer function of the system for the pitch channel is as follows.  

(ݏ),ఏܩ =
(ݏ)ߠ
ܸ(ݏ) =  

37.2021
ଶݏ + ݏ0.2830 + 2.7452 

The closed loop system presentation for the yaw channel is shown in figure 4. 

 
Figure 4: Closed loop system (Yaw channel). 

The system for the yaw angle can be expressed in the following transfer function  

(ݏ),టܩ =
(ݏ)߰
௬ܸ(ݏ) =  

7.461
ݏ)ݏ + 0.2701) 

Both part of the system needs to be controlled as per the desired specifications. 

III. DESIGN SPECIFICATIONS 
The desired controller for the pitch channel must have an overshoot of less then 20 percent, a setteling time of les the 16 seconds, 
and a rise time of less the 2 seconds [14-15]. The desired specifications are presented as follows: 
ܯ ≤ 20%,    
௦ݐ ≤    ,ܿ݁ݏ 16
ݐ  ≤    ,ܿ݁ݏ 2
(ݐݑ݊݅ ݁ݐݏ) ݎݎݎ݁ ݁ݐܽݐݏ ݕ݀ܽ݁ݐܵ = 0, 
(ܾ݁ܿ݊ܽݎݑݐݏ݅݀ ݁ݐݏ) ݎݎݎ݁ ݁ݐܽݐݏ ݕ݀ܽ݁ݐܵ = 0,   
 
The specifications for the yaw controller are presented as follows: 
ܯ ≤ 20%,    
௦ݐ ≤    ,ܿ݁ݏ 16
ݐ  ≤    ,ܿ݁ݏ 2
(ݐݑ݊݅ ݁ݐݏ) ݎݎݎ݁ ݁ݐܽݐݏ ݕ݀ܽ݁ݐܵ = 0, 
(ܾ݁ܿ݊ܽݎݑݐݏ݅݀ ݁ݐݏ) ݎݎݎ݁ ݁ݐܽݐݏ ݕ݀ܽ݁ݐܵ = 0,   
The response (θ(t)) to step disturbance must settle within 16 s. For this item, we define the settling time as follows. Let θmax = 
max|θ(t)| (t ≥ 0) [17]. The settling time is the time after which |θ(t)| < 0.02θmax. 

IV. CONTROLLER DESIGN  
1) Part 1: Design of pitch channel controller. 
The continous system is digitized in order to create the discrete time controller. The discrete transfer function of the plant with a 
sampling time of 0.2 since the rise time must be less or equal two seconds [18, 19].  

The discrete time plant transfer function using zero order hold is as follows: 

(ݖ),ఏܩ =  
ݖ0.1838 + 0.1821

ଶݖ − ݖ 1.945 + 0.972 

The discrete feedback control system can be observed in figure4. 
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Figure 5: discrete system block diagram 

A. Percentage overshoot Calculations 
Table 1: Zeta vs. Overshoot table. 

≥ ࣀ  ࡹ
0.7 5 % 
0.6 10% 
0.5 15% 
0.46 20% 

 

Since the design specification for the overshoot is ܯ ≤ 20%, then is selected from table 1 the dampening ratio can be select as 
ߞ  = 0.7 in order to ensure that the system is dynamic and operates within the desired specification then the dampening ratio is chosen 
from the information gathered from figures 5 and 6.  

 
Figure 6: the root locus with the poles and zeros of the open loop system. 
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B. Rise time calculations. 
Since the design specification for the rise time is ݐ  ≤ ݓ ,ܿ݁ݏ 2  can be calculated using the rise time as follows: 
The rise time of the system as per the desired specifications is 2 sec.  
The equation for the rise time calculations is: 

ܶ =  
1.8
ݓ

     

With ܶ = 2 as per the desired specification  ݓ can be calculated as follows 

ݓ  ≥  
1.8
2     → ݓ   ≥ 0.9   

 

C. Settling time calculations  
The settling time of the system can be estimated using the below equation  

௦ܶ =  
4.6

ݓ ∗ ߞ
 

With ߞ = ݓ ݀݊ܽ  0.7 = 0.9 

௦ܶ =
4.6

0.7 ∗ 0.9 =   ܿ݁ݏ 7.3 

This means that the settling time for our chosen parameters is estimated to be 7.3 sec which is less than the desired settling time of 
less than 16 sec. 

 

D. Sampling time calculations  
The sampling frequency is calculated using the bandwidth frequency  ݓ௪ which can be derived as follows. 
௪ݓ = (−1.196 × ߞ   +  ݓ(1.85
௪ݓ = (−1.196 ×   0.7 + 1.85) ∗ 0.9 
௪ݓ =  ܿ݁ݏ/݀ܽݎ 0.9115
From the bandwidth frequency ݓ௦  can be calculated as follows: 
௦ݓ = 30 × ௪ݓ  = 30 × 0.9115 =  27.3450 
௦ݓ =  27.3450 = ߨ2 ௦݂      →  ௦݂ = 4.3521    

௦ܶ =  
1
௦݂

= 0.229 sec  

For this project the rise time will be chosen as 0.15 sec to give the system more dynamic freedom in our calculation. 

E. Desired pole calculation  
Desired pole calculation: 
ଵ,ଶݏ = ݓߞ −  ± −ඥ(1ݓ݆   (ଶߞ
ݓ = ߞ  ,  0.9 = 0.7  ,   ܶ = 0.15 
ଵ,ଶݏ =  −(0.7)(0.9) ± ݆(0.9)ඥ(1− (0.7)ଶ) =    −0.7200 ± ݆ 0.5400 
In z domain  
ݖ =  ݁௦்  ,  
ଵݖ =   ݁(ି.ଶ ା .ହସ)×.ଵହ = ݁ି.ଶ  × .ଵହ݁ .ହସ × .ଵହ =  ݁ି.ଵ଼ [cos(0.081) + ݆ sin(0.081)] 
The desired poles of the system are: 
ଵݖ  =  0.9056 + ݆   0.0876     
ଶݖ  =  0.9056 − ݆   0.0876     
The poles of the open loop system are: 

(ݖ),ఏܩ =  
ݖ) + 0.9859)

ݖ) −  0.9491 + ݖ)(0.2400 ݆ −  0.9491− ݆ 0.2400) 
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ଵܲ =  0.9491 + ݆ 0.2400 
ଶܲ =  0.9491 − ݆ 0.2400 

The zero of the open loop system is: 
ଵݖ =  −0.9859 
These poles and zeros can be seen in the root locus of the system: 

 
Figure 7: root locus of the open loop system. 

In order to stabilize the system and meet the steady state error requirements a pole will be placed near the systems zero in order to 
decrease and counteract its effect on the system (ܲ = − 0.9854) And the complex poles will be counteracted using zeros in the 
controller [20, 21, 22]. In order to use two zeros a lead lag compensator was used. 

(ݖ)ఏܭ =  ܭ
ݖ) − ܽଵ)(ݖ − ܽଶ)
ݖ) − ܾଵ)(ݖ − ܾଶ) 

After adding the selected poles or zeros 

(ݖ)ఏܭ =  ܭ
ݖ) − 0.9090 + ݖ)(0.2396 ݆ − 0.9090 + ݆ 0.2396)

ݖ) + ݖ)(0.9854 − ܾଶ)  

To find the pole of the controller the desired poles were used to approximate the position of the controller. 

 
Figure 8: Angle and magnitude criteria. 
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ଵߠ = ) ଵି݊ܽݐ
0.0876

0.9859 + 0.9056)  =  (݉݁ݐݏݕݏ ݎ݁ݖ)2.65° 

= ଶߠ ) ଵି݊ܽݐ
0.0876

0.9854 + 0.9056)  =  (ݎ݈݈݁ݎݐ݊ܿ ݈݁)2.65° 

ଷߠ = 360− ଵି݊ܽݐ  ൬
0.24− 0.0876

0.909− 0.9056
൰ =  (݉݁ݐݏݕݏ ݈݁)271.3° 

ସߠ = ଵି݊ܽݐ  ൬
0.0876 + 0.2369
0.909− 0.9056

൰ =  (ݎ݁ݖ ݎ݈݈݁ݎݐ݊ܿ)89.33° 

ହߠ = 180− ଵି݊ܽݐ  ൬
0.24 + 0.0876
0.949− 0.909

൰ =  (݈݁ ݉݁ݐݏݕݏ)90.6° 

ߠ = 360− ଵି݊ܽݐ  ൬
0.2369− 0.0876

0.949− 0.909
൰ =  (ݎ݈݈݁ݎݐ݊ܿ ݎ݁ݖ)271.27° 

 
ݏݎܼ݁ ∢ − ݏ݈݁ܲ ∢  =  −180 
ଵߠ) + ସߠ + −(ߠ ଷߠ) + + ଶߠ  (ହߠ =  −180 
2.65° + 89.33° + 271.25° − 90.6°− 271.3°− 2.65°− ଶߠ  =  −180 
ଶߠ =  180 − 133.93 = 46.065 

tan(46.065) =  
0.0876

0.9056−  ܾଶ
 

ܾଶ = 0.99 
After some trial and error the pole was selected as 0.99 as to not be placed on the unit circle but be in a position to stabilize the 

system. 
The final lead lag controller is as follows: 

(ݖ)ఏܭ =  ܭ
ݖ) − 0.9090 + ݖ)(0.2396 ݆ − 0.9090 + ݆ 0.2396)

ݖ) + ݖ)(0.9854 − 0.99)  

The closed loop system with the controller is  

(ݖ)ܩ =  
(ݖ)ܩ(ݖ)ఏܭ

1  (ݖ)ܩ(ݖ)ఏܭ+

The characteristic equation (C.E) = 1 (ݖ)ܩ(ݖ)ఏܭ+ = 0.0 

|(ݖ)ܩ||(ݖ)ఏܭ| = |−1| 

ݖ)| ܭ − 0.9090 + ଵݖ)(0.2396 ݆ − 0.9090− ݆ 0.2396)|
ଵݖ)| + ଵݖ)(0.9854 − 0.99)|  .

ݖ0.1838| + 0.1821|
ଶݖ| − ݖ 1.945 + 0.972| = 1 

 
By solving the characteristic equation, the gain is found to be 0.34. After some trial and error the gain was chosen to be 2.52 (K = 
2.52) in order to reach the systems specifications [23-24]. 

The discrete time controller can be written as follows: 

(ݖ)ఏܭ = 2.52 ∗  
ݖ) − 0.9090 + ݖ)(0.2396 ݆ − 0.9090 + ݆ 0.2396)

ݖ) + ݖ)(0.9854 − 0.99)  

(ݖ)ఏܭ = 2.52 ∗  
ଶݖ − +ݖ1.817 0.88366
ଶݖ − ݖ0.0046 + 0.9755 

The closed loop transfer function is  
(ݖ)ߠ
ܴఏ(ݖ) =  

ଷݖ 1.035  − ଶݖ 0.8598   − + ݖ0.9392   0.9014
ସݖ  − ଷݖ 0.8683  − ଶݖ 0.8682   + ݖ0.9083 −  0.03365 
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The closed loop root locus is shown in the following figure  

 
Figure 9: the root locus for the closed loop system 

F.  The response of the closed–loop system (θ[n]) to unit step reference input. 
In order to check if the system meets the required criteria the step response is simulated in MATLAB. 

 
Figure 10: The step response of the closed loop system. 
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The result of the closed loop unit step response can be observed in table 2. 

Table 2: closed loop system specifications 
Overshoot 8.2441 
Rise Time 0 
Settling Time 3.9000 
Steady state error 0 

The steady state error of the system is 0.0 since a pole was placed on the unit circle.  

݁௦௦ =  
1

1 + ݇
 

ܭ =  lim
௭→ଵ

 (ݖ)ܭ(ݖ)ܩ

(ݖ)ఏܭ = 2.52 ∗  
ଶݖ − +ݖ1.817 0.88366
ଶݖ − ݖ0.0046 + 0.9755 

(ݖ)ܩ =  
ݖ 0.4106 + 0.4048

ଶݖ − + ݖ 1.898   0.9584 

ܭ =  lim
௭→ଵ

2.52 ∗ ଶݖ) − ݖ1.817 + ݖ 0.4106)(0.88366 + 0.4048)
ଶݖ) − ݖ0.0046 + ଶݖ)(0.9755 − + ݖ 1.898   0.9584) =  ∞ 

So ݁௦௦ = 0.  
 
G.  The response of the closed–loop system (θ[n]) to unit step disturbance 

 
(ݖ)ߠ
(ܼ)ܦ =  

(ݖ)ఏܩ
1 +  (ݖ)ఏܩ(ݖ)ܭ

 
Figure 11: the response of the system to a unit step disturbance. 



International Journal for Research in Applied Science & Engineering Technology (IJRASET) 
                                                                                           ISSN: 2321-9653; IC Value: 45.98; SJ Impact Factor: 7.429 

                                                                                                                Volume 8 Issue V May 2020- Available at www.ijraset.com 
     

 ©IJRASET: All Rights are Reserved 2201 

The steady state error of the system is 0.0 to a step input disturbance.   

௦௦ߠ =  lim
௭ →ଵ

(ݖ)ܩ
1  (ݖ)ܩ(ݖ)ܭ+

௦௦ߠ =  lim
௭→ଵ

(1 + ((ݖ)ܩ(ݖ)ܭ =  ∞ 

௦௦ߠ = 0 

Table 3: closed loop system specifications (with step response to the disturbance) 
Overshoot 2.0032e+03 
Rise Time 0 
Settling Time 10.0500 
Steady state error 0 

 

From the table it can be seen that the settling time of systems reaction to a step disturbance is less than 16 seconds which means that 
the system specifications has been met.  

H.  Obtain motor voltage vp[n] in response to step reference input in the pitch channel. 
From the step response the peak voltage can be derived [25, 26]. From this the maximum size of step input that does not result in 
motor saturation is calculated as follows. 

ܸ௫

ܸ
=

8
1.0720 =  7.46 

V. CONCLUSION 
In this project a controller for a 2-DOF helicopter was designed using the root locus method. The poles and zeros of the lead lag 
controller were strategically placed to allow the maximum controllability and stability of the system. Simulation results were 
presented to show the result of the proposed controller under various conditions.  
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