

3 VI June 2015

www.ijraset.com Volume 3 Issue VI, June 2015
IC Value: 13.98 ISSN: 2321-9653

International Journal for Research in Applied Science & Engineering
Technology (IJRASET)

©IJRASET 2015: All Rights are Reserved
359

Efficient Fixed-Point DLMS Adaptive Filter
Implementation on FPGA

J.Shobha1, Y.Murali, M.Tech2

Department of Electronics and communication Engineering
Audisankara College of Engineering & Technology, Gudur, (Autonomous)

Abstract- In this paper, we present an efficient architecture for the implementation of a delayed least mean square adaptive filter.
For achieving lower adaptation-delay and area-delay-power efficient implementation, we use a novel partial product generator
and propose a strategy for optimized balanced pipelining across the time-consuming combinational blocks of the structure. From
synthesis results, we find that the proposed design offers nearly 17% less area-delay product (ADP) and nearly 14% less energy-
delay product (EDP) than the best of the existing systolic structures, on average, for filter lengths N = 8, 16, and 32. We propose
an efficient fixed-point implementation scheme of the proposed architecture, and derive the expression for steady-state error. We
show that the steady-state mean squared error obtained from the analytical result matches with the simulation result. Moreover,
we have proposed a bit-level pruning of the proposed architecture, which provides nearly 20% saving in ADP and 9% saving in
EDP over the proposed structure before pruning without noticeable degradation of steady-state-error performance.
Index Terms—Adaptive filters, circuit optimization, fixed-point arithmetic, least mean square (LMS) algorithms.

I. INTRODUCTION

THE LEAST MEAN SQUARE (LMS) adaptive filter is the most popular and most widely used adaptive filter, not only because of
its simplicity but also because of its satisfactory convergence performance [1], [2]. The direct-form LMS adaptive filter involves a
long critical path due to an inner-product computation to obtain the filter output. The critical path is required to be reduced by
pipelined implementation when it exceeds the desired sample period. Since the conventional LMS algorithm does not support
pipelined implementation because of its recursive behavior, it is modified to a form called the delayed LMS (DLMS) algorithm [3]–
[5], which allows pipelined implementation of the filter.
A lot of work has been done to implement the DLMS algorithm in systolic architectures to increase the maximum usable frequency
[3], [6], [7] but, they involve an adaptation delay of ~N cycles for filter length N, which is quite high for large order filters. Since the
convergence performance degrades considerably for a large adaptation delay, Visvanathan et al. [8] have proposed a modified
systolic architecture to reduce the adaptation delay. A transpose-form LMS adaptive filter is suggested in [9], where the filter output
at any instant depends on the delayed versions of weights and the number of delays in weights varies from 1 to N. Van and Feng
[10] have proposed a systolic architecture, where they have used relatively large processing elements (PEs) for achieving a lower
adaptation delay with the critical path of one MAC operation.
Ting et al. [11] have proposed a fine-grained pipelined design to limit the critical path to the maximum of one addition time, which
supports high sampling frequency, but involves a lot of area overhead for pipelining and higher power consumption than in [10],
due to its large number of pipeline latches.
Further effort has been made by Meher and Maheshwari [12] to reduce the number of adaptation delays. Meher and Park have
proposed a 2-bit multiplication cell, and used that with an efficient adder tree for pipelined inner-product computation to
minimize the critical path and silicon area without increasing the number of adaptation delays [13], [14].
The existing work on the DLMS adaptive filter does not discuss the fixed-point implementation issues, e.g., location of radix point,
choice of word length, and quantization at various stages of computation, although they directly affect the convergence
performance, particularly due to the recursive behavior of the LMS algorithm. Therefore, fixed-point implementation issues are
given adequate emphasis in this paper. Besides, we present here the optimization of our previously reported design [13], [14] to
reduce the number of pipeline delays along with the area, sampling period, and energy consumption. The proposed design is found
to be more efficient in terms of the power- delay product (PDP) and energy-delay product (EDP) compared to the existing
structures.
In the next section, we review the DLMS algorithm, and in Section III, we describe the proposed optimized architecture for its

www.ijraset.com Volume 3 Issue VI, June 2015
IC Value: 13.98 ISSN: 2321-9653

International Journal for Research in Applied Science & Engineering
Technology (IJRASET)

©IJRASET 2015: All Rights are Reserved
360

implementation. Section IV deals with fixed-point implementation considerations and simulation studies of the convergence of the
algorithm. In Section V, we discuss the synthesis of the proposed architecture and comparison with the existing architectures.
Conclusions are given in Section VI.

II. REVIEW OF DELAYED LMS ALGORITHM

The weights of LMS adaptive filter during the nth iteration are updated according to the following equations [2]:
௡ܹାଵ = ௡ܹ + .ߤ ݁௡.ݔ௡ 																								1(ܽ)

Where
݁௡ = ݀௡ − ௡ݕ ௡ݕ					, = ௡ܹ

௡ݔ.் 											1(ܾ)
where the input vector xn, and the weight vector wn at the nth iteration are, respectively, given by
 xn = [xn, xn−1, . . . , xn−N+1]T
 wn = [wn(0),wn(1), . . . ,wn(N − 1)]T,
dn is the desired response, yn is the filter output, and en denotes the error computed during the nth iteration. μ is the step-size, and N
is the number of weights used in the LMS adaptive filter.
In the case of pipelined designs with m pipeline stages, the error en becomes available after m cycles, where m is called the
“adaptation delay.” The DLMS algorithm therefore uses the delayed error en−m, i.e., the error corresponding to (n − m)th iteration for
updating the current weight instead of the recent-most error. The weight-update equation of DLMS adaptive filter is given by

௡ܹାଵ = ௡ܹ + .ߤ ݁௡ି௠ ௡ି௠ݔ. 																								(2)
The block diagram of the DLMS adaptive filter is shown in Fig. 1, where the adaptation delay of m cycles amounts to the delay
introduced by the whole of adaptive filter structure consisting of finite impulse response (FIR) filtering and the weight- update
process.

Fig.1 Structure of the conventional delayed LMS adaptive filter.

It is shown in [12] that the adaptation delay of conventional LMS can be decomposed into two parts: one part is the delay introduced
by the pipeline stages in FIR filtering, and the other part is due to the delay involved in pipelining the weight update process. Based
on such a decomposition of delay, the DLMS adaptive filter can be implemented by a structure shown in Fig. 2.

Fig.2 Structure of the modified delayed LMS adaptive filter.

Assuming that the latency of computation of error is n1 cycles, the error computed by the structure at the nth cycle is en−n1 , which is

www.ijraset.com Volume 3 Issue VI, June 2015
IC Value: 13.98 ISSN: 2321-9653

International Journal for Research in Applied Science & Engineering
Technology (IJRASET)

©IJRASET 2015: All Rights are Reserved
361

used with the input samples delayed by n1 cycles to generate the weight-increment term. The weight- update equation of the
modified DLMS algorithm is given by

௡ܹାଵ = ௡ܹ + .ߤ ݁௡ି௡ଵ.ݔ௡ି௡ଵ																								(3ܽ)
Where

݁௡ି௡ଵ = ݀௡ି௡ଵ − (3ܾ)			௡ି௡ଵ,ݕ

௡ݕ		 = ௡ܹି௡ଶ
் ௡ݔ. 											3(ܿ)

We notice that, during the weight update, the error with n1 delays is used, while the filtering unit uses the weights delayed by n2
cycles. The modified DLMS algorithm decouples computations of the error-computation block and the weight-update block and
allows us to perform optimal pipelining by feed forward cut-set retiming of both these sections separately to minimize the number
of pipeline stages and adaptation delay.
The adaptive filters with different n1 and n2 are simulated for a system identification problem. The 10-tap band-pass filter with
impulse response is

ℎ௡ =
sin(ݓு(݊ − 4.5))

݊)ߨ − 4.5) −
sin(௅ܹ(݊ − 4.5))

݊)ߨ − 4.5)

For n=0,1,2,….,9 otherwise hn=0 (4)

used as the unknown system as in [10]. wH and wL represent the high and low cutoff frequencies of the pass band, and are set to wH =
0.7π and wL = 0.3π, respectively. The step size μ is set to 0.4. A 16-tap adaptive filter identifies the unknown system with Gaussian
random input xn of zero mean and unit variance. In all cases, outputs of known system are of unity power, and contaminated with
white Gaussian noise of −70 dB strength.

III. PROPOSED ARCHITECTURE

As shown in Fig. 2, there are two main computing blocks in the adaptive filter architecture: 1) the error-computation block, and 2)
weight-update block. In this Section, we discuss the design strategy of the proposed structure to minimize the adaptation delay in the
error-computation block, followed by the weight-update block.

A. Pipelined Structure of the Error-Computation Block
The proposed structure for error-computation unit of an N-tap DLMS adaptive filter is shown in Fig. 3.

Fig. 3 Proposed structure of the error-computation block.

It consists of N number of 2-b partial product generators (PPG) corresponding to N multipliers and a cluster of L/2 binary adder
trees, followed by a single shift–add tree. Each sub-block is described in detail.
1) Structure of PPG: The structure of each PPG is shown in Fig. 4. It consists of L/2 number of 2-to-3 decoders and the same

www.ijraset.com Volume 3 Issue VI, June 2015
IC Value: 13.98 ISSN: 2321-9653

International Journal for Research in Applied Science & Engineering
Technology (IJRASET)

©IJRASET 2015: All Rights are Reserved
362

number of AND/OR cells (AOC).1 Each of the 2-to-3 decoders takes a 2-b digit (u1u0) as input and produces three outputs b0
= u0 · . u1, b1 = . u0 · u1, and b2 = u0 · u1, such that b0 = 1 for (u1u0) = 1, b1 = 1 for (u1u0) = 2, and b2 = 1 for (u1u0) = 3.
The decoder output b0, b1 and b2 along with w, 2w, and 3w are fed to an AOC, where w, 2w, and 3w are in 2’s complement
representation and sign-extended to have (W + 2) bits each.

To take care of the sign of the input samples while computing the partial product corresponding to the most significant digit (MSD),
i.e., (uL−1uL−2) of the input sample, the AOC (L/2 − 1) is fed with w, −2w, and −w as input since (u L−1 u L−2) can have four
possible values 0, 1, −2, and −1.

Fig. 4 Proposed structure of PPG. AOC stands for AND/OR cell.

2) Structure of AOCs: The structure and function of an AOC are depicted in Fig. 5. Each AOC consists of three AND cells and

two OR cells. The structure and function of AND cells and OR cells are depicted by Fig. 5(b) and (c), respectively. Each AND
cell takes an n-bit input D and a single bit input b, and consists of n AND gates. It distributes all the n bits of input D to its n
AND gates as one of the inputs. The other inputs of all the n AND gates are fed with the single-bit input b. As shown in Fig.
5(c), each OR cell similarly takes a pair of n-bit input words and has n OR gates. A pair of bits in the same bit position in B and
D is fed to the same OR gate. The output of an AOC is w, 2w, and 3w corresponding to the decimal values 1, 2, and 3 of the 2-b
input (u1u0), respectively.

Fig.5.Structure and function of AND/OR cell. Binary operators · and + in (b) and (c) are implemented using AND and OR gates,
respectively.

The decoder along with the AOC performs a multiplication of input operand w with a 2-b digit (u1u0), such that the PPG of Fig. 5

www.ijraset.com Volume 3 Issue VI, June 2015
IC Value: 13.98 ISSN: 2321-9653

International Journal for Research in Applied Science & Engineering
Technology (IJRASET)

©IJRASET 2015: All Rights are Reserved
363

performs L/2 parallel multiplications of input word w with a 2-b digit to produce L/2 partial products of the product word wu.

3) Structure of Adder Tree
Conventionally, we should have performed the shift-add operation on the partial products of each PPG separately to obtain the
product value and then added all the N product values to compute the desired inner product. However, the shift-add operation to
obtain the product value increases the word length, and consequently increases the adder size of N − 1 additions of the product
values. To avoid such increase in word size of the adders, we add all the N partial products of the same place value from all the N
PPGs by one adder tree.
All the L/2 partial products generated by each of the N PPGs are thus added by (L/2) binary adder trees. The outputs of the L/2 adder
trees are then added by a shift-add tree according to their place values. Each of the binary adder trees require log2 N stages of adders
to add N partial product, and the shift–add tree requires log2 L − 1 stages of adders to add L/2 output of L/2 binary adder trees.2 The
addition scheme for the error-computation block for a four-tap filter and input word size L = 8 is shown in Fig. 6.

Fig.6. Adder-structure of the filtering unit for N = 4 and L = 8.

For N = 4 and L = 8, the adder network requires four binary adder trees of two stages each and a two-stage shift–add tree. In this
figure, we have shown all possible locations of pipeline latches by dashed lines, to reduce the critical path to one addition time. If
we introduce pipeline latches after every addition, it would require L(N − 1)/2 + L/2 − 1 latches in log2 N + log2 L − 1 stages, which
would lead to a high adaptation delay and introduce a large overhead of area and power consumption for large values of N and L. On
the other hand, some of those pipeline latches are redundant in the sense that they are not required to maintain a critical path of one
addition time. The final adder in the shift–add tree contributes to the maximum delay to the critical path. Based on that observation,
we have identified the pipeline latches that do not contribute significantly to the critical path and could exclude those without any
noticeable increase of the critical path.

B. Pipelined Structure of the Weight-Update Block
The proposed structure for the weight-update block is shown in Fig. 7. It performs N multiply-accumulate operations of the form (μ
× e) × xi + wi to update N filter weights. The step size μ is taken as a negative power of 2 to realize the multiplication with recently
available error only by a shift operation.

www.ijraset.com Volume 3 Issue VI, June 2015
IC Value: 13.98 ISSN: 2321-9653

International Journal for Research in Applied Science & Engineering
Technology (IJRASET)

©IJRASET 2015: All Rights are Reserved
364

Fig.7.Proposed structure of the weight-update block.

Each of the MAC units therefore performs the multiplication of the shifted value of error with the delayed input samples xi followed
by the additions with the corresponding old weight values wi. All the N multiplications for the MAC operations are performed by N
PPGs, followed by N shift– add trees. Each of the PPGs generates L/2 partial products corresponding to the product of the recently
shifted error value μ × e with L/2, the number of 2-b digits of the input word xi , where the sub-expression 3μ×e is shared within the
multiplier. Since the scaled error (μ×e) is multiplied with all the N delayed input values in the weight-update block, this sub-
expression can be shared across all the multipliers as well.
This leads to substantial reduction of the adder complexity. The final outputs of MAC units constitute the desired updated weights to
be used as inputs to the error-computation block as well as the weight-update block for the next iteration.

C. Adaptation Delay
As shown in Fig. 2, the adaptation delay is decomposed into n1 and n2. The error-computation block generates the delayed error by
n1 −1 cycles as shown in Fig. 3, which is fed to the weight-update block shown in Fig. 8 after scaling by μ; then the input is delayed
by 1 cycle before the PPG to make the total delay introduced by FIR filtering be n1. In Fig. 7, the weight-update block generates
wn−1−n2, and the weights are delayed by n2+1 cycle. However, it should be noted that the delay by 1 cycle is due to the latch before
the PPG, which is included in the delay of the error-computation block, i.e., n1. Therefore, the delay generated in the weight-update
block becomes n2. If the locations of pipeline latches are decided, n1 becomes 5, where three latches are in the error-computation
block, one latch is after the subtraction in Fig. 3, and the other latch is before PPG in Fig. 7. Also, n2 is set to 1 from a latch in the
shift-add tree in the weight-update block.

D. Adder-Tree Optimization
The adder tree and shift–add tree for the computation of yn can be pruned for further optimization of area, delay, and power
complexity. To illustrate the proposed pruning optimization of adder tree and shift–add tree for the computation of filter output, we
take a simple example of filter length N = 4, considering the word lengths L and W to be 8. The dot diagram of the adder tree is
shown in Fig. 8.

www.ijraset.com Volume 3 Issue VI, June 2015
IC Value: 13.98 ISSN: 2321-9653

International Journal for Research in Applied Science & Engineering
Technology (IJRASET)

©IJRASET 2015: All Rights are Reserved
365

Fig.8. Dot-diagram for optimization of the adder tree in the case of N = 4, L = 8, and W = 8.

Each row of the dot diagram contains 10 dots, which represent the partial products generated by the PPG unit, for W = 8. We have
four sets of partial products corresponding to four partial products of each multiplier, since L = 8. Each set of partial products of the
same weight values contains four terms, since N = 4. The final sum without truncation should be 18 b. However, we use only 8 b in
the final sum, and the rest 10 b are finally discarded.
To reduce the computational complexity, some of the LSBs of inputs of the adder tree can be truncated, while some guard bits can
be used to minimize the impact of truncation on the error performance of the adaptive filter. In Fig.8, four bits
are taken as the guard bits and the rest six LSBs are truncated.To have more hardware saving, the bits to be truncated are not
generated by the PPGs, so the complexity of PPGs also gets reduced.

IV. SIMULATION RESULTS

The simulations of the proposed LMS adaptive filter structure are carried out by using Verilog HDL in Xilinx tool.
The RTL schematic and simulation results of proposed LMS adaptive filter are shown in below figures.

Fig.9 RTL schematic of proposed design

Truncated
bits

Guard bits

Final truncation

www.ijraset.com Volume 3 Issue VI, June 2015
IC Value: 13.98 ISSN: 2321-9653

International Journal for Research in Applied Science & Engineering
Technology (IJRASET)

©IJRASET 2015: All Rights are Reserved
366

Fig.10 simulation results of proposed design

V. CONCLUSION

We proposed an area–delay-power efficient low adaptation delay architecture for fixed-point implementation of LMS adaptive
filter. We used a novel PPG for efficient implementation of general multiplications and inner-product computation by common sub-
expression sharing. Besides, we have proposed an efficient addition scheme for inner-product computation to reduce the adaptation
delay significantly in order to achieve faster convergence performance and to reduce the critical path to support high input-sampling
rates. Aside from this, we proposed a strategy for optimized balanced pipelining
across the time-consuming blocks of the structure to reduce the adaptation delay and power consumption, as well. The proposed
structure involved significantly less adaptation delay and provided significant saving of ADP and EDP compared to the existing
structures.

REFERENCES

[1] B. Widrow and S. D. Stearns, Adaptive Signal Processing. Englewood Cliffs, NJ, USA: Prentice-Hall, 1985.
[2] S. Haykin and B. Widrow, Least-Mean-Square Adaptive Filters. Hoboken, NJ, USA: Wiley, 2003.
[3] M. D. Meyer and D. P. Agrawal, “A modular pipelined implementation of a delayed LMS transversal adaptive filter,” in Proc. IEEE Int. Symp.
Circuits Syst., May 1990, pp. 1943–1946.
[4] G. Long, F. Ling, and J. G. Proakis, “The LMS algorithm with delayed coefficient adaptation,” IEEE Trans. Acoust., Speech, Signal Process., vol. 37, no. 9, pp.
1397–1405, Sep. 1989.
[5] G. Long, F. Ling, and J. G. Proakis, “Corrections to ‘The LMS algorithm with delayed coefficient adaptation’,” IEEE Trans. Signal Process., vol. 40, no. 1, pp.
230–232, Jan. 1992.
[6] H. Herzberg and R. Haimi-Cohen, “A systolic array realization of an LMS adaptive filter and the effects of delayed adaptation,” IEEE Trans. Signal Process., vol.
40, no. 11, pp. 2799–2803, Nov. 1992.
[7] M. D. Meyer and D. P. Agrawal, “A high sampling rate delayed LMS filter architecture,” IEEE Trans. Circuits Syst. II, Analog Digital Signal Process., vol. 40,
no. 11, pp. 727–729, Nov. 1993.
[8] S. Ramanathan and V. Visvanathan, “A systolic architecture for LMS adaptive filtering with minimal adaptation delay,” in Proc. Int. Conf. Very Large Scale
Integr. (VLSI) Design, Jan. 1996, pp. 286–289.
[9] Y. Yi, R. Woods, L.-K. Ting, and C. F. N. Cowan, “High speed FPGA-based implementations of delayed-LMS filters,” J. Very Large Scale Integr. (VLSI) Signal
Process., vol. 39, nos. 1–2, pp. 113–131, Jan. 2005.
[10] L. D. Van and W. S. Feng, “An efficient systolic architecture for the DLMS adaptive filter and its applications,” IEEE Trans. Circuits Syst. II, Analog Digital
Signal Process., vol. 48, no. 4, pp. 359–366,
Apr. 2001.
[11] L.-K. Ting, R. Woods, and C. F. N. Cowan, “Virtex FPGA implementation of a pipelined adaptive LMS predictor for electronic support measures receivers,”
IEEE Trans. Very Large Scale Integr. (VLSI) Syst., vol. 13, no. 1, pp. 86–99, Jan. 2005.
[12] P. K. Meher and M. Maheshwari, “A high-speed FIR adaptive filter architecture using a modified delayed LMS algorithm,” in Proc. IEEE Int. Symp. Circuits
Syst., May 2011, pp. 121–124.
[13] P. K. Meher and S. Y. Park, “Low adaptation-delay LMS adaptive filter part-I: Introducing a novel multiplication cell,” in Proc. IEEE Int. Midwest Symp.
Circuits Syst., Aug. 2011, pp. 1–4.
[14] P. K. Meher and S. Y. Park, “Low adaptation-delay LMS adaptive filter part-II: An optimized architecture,” in Proc. IEEE Int. Midwest Symp. Circuits Syst.,

www.ijraset.com Volume 3 Issue VI, June 2015
IC Value: 13.98 ISSN: 2321-9653

International Journal for Research in Applied Science & Engineering
Technology (IJRASET)

©IJRASET 2015: All Rights are Reserved
367

Aug. 2011, pp. 1–4.
[15] K. K. Parhi, VLSI Digital Signal Procesing Systems: Design and Implementation. New York, USA: Wiley, 1999.
[16] C. Caraiscos and B. Liu, “A roundoff error analysis of the LMS adaptive algorithm,” IEEE Trans. Acoust., Speech, Signal Process., vol. 32, no. 1, pp. 34–41,
Feb. 1984.
[17] R. Rocher, D. Menard, O. Sentieys, and P. Scalart, “Accuracy evaluation of fixed-point LMS algorithm,” in Proc. IEEE Int. Conf. Acoust., Speech, Signal
Process., May 2004, pp. 237–240.

AUTHOR’S PROFILE

Jadapalli Shobha received her B.Tech degree in Electronics and communication Engineering from
Geethanjali institute of science and technology, Gangavaram(vi), kovur mandal, Nellore District, affiliated to JNTU Anantapur. She
is currently pursuing M.Tech VLSI in Audisankara college of Engineering and Technology, Gudur(Autonomous), SPSR Nellore
(Dist), affiliated to JNTU Anantapur.

 Y.Murali received his M.Tech in VLSI from Vathsalya Institute of Science and
Technology,Bhongir,Nalgonda(Dist). He has 6 years and 4 months teaching experience. He is presently working as Assistant
Professor in the department of ECE Audisankara College of Engineering and Technology,Gudur (Autonomous), Affiliated to JNTU,
Anantpur.

