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Abstract: Nadarajah and Haghighi has defined the extension of the exponential distribution we have called this as NHE 
distribution. It is continuous probability distribution with a wide range of applications such as in life testing experiments, 
reliability analysis, applied statistics and clinical studies. However, it is not flexible enough for modeling heavily skewed datasets 
as compared to modified distributions. In this study, we have generated a new continuous distribution having three parameters 
based on the half logistic-Generating family called half logistic NHE. The structural properties of this model are explored such 
as the probability density, cumulative density, hazard rate, reversed hazard rate, and quantile functions. The model parameters 
are estimated using the three well-known methods namely maximum likelihood estimation (MLE), least-square estimation (LSE) 
and Cramer-Von-Mises (CVM) methods. Further, we have computed the Fisher information matrix and asymptotic confidence 
intervals for ML estimators. The potentiality of the proposed distribution is also evaluated by fitting it in contrast with some other 
existing distributions using a real life data. 
Keywords: Half-logistic distribution, NHE, Estimation, Maximum likelihood. 
 

I.  INTRODUCTION 
In most of the literature of statistics it is found that the study of reliability and survival analysis in various fields of applied statistics 
and life sciences, the probability distributions are often used. In modeling survival data, existing models do not always present a 
better fit. Hence most of the researchers are paying attention to generalizing classical distributions and investigating their flexibility 
and applicability. Usually, these new generalized models provide an improved fit as compared to usual classical distributions and 
are obtained by introducing one or more additional shape parameter(s) to the baseline distribution. 
In probability theory and statistics, the exponential distribution plays a significant role in analyses of survival data. It is the 
probability distribution of the time between events in a Poisson point process, i.e., a process in which events occur continuously and 
independently at a constant average rate. It is a particular case of the gamma distribution. It is the continuous analog of the 
geometric distribution, and it has the key property of being memoryless. In addition to being used for the analysis of Poisson point 
processes, it is found in various other contexts.  
For a few decades, it is found that the exponential distribution is taken as base distribution to generate a new family of distribution. 
The modifications of the exponential distribution were introduced by different researchers, some of them are, beta exponential 
(Nadarajah and Kotz, 2006), Gupta and Kundu (2007) have presented the generalized exponential (GE) with some development, 
Abouammoh & Alshingiti (2009) has introduced the reliability estimation of the generalized inverted exponential distribution, beta 
GE (Barreto-Souza et al., 2010), Exponential Extension (EE) distribution (Kumar, 2010), KW (Kumaraswamy) exponential 
(Cordeiro and de Castro, 2011), Nadarajah & Haghighi (2011) have presented an extension of the exponential distribution, gamma 
EE by (Ristic and Balakrishnan, 2012), Transmuted EE distribution by (Merovci, 2013), Lemonte, A. J. (2013) has introduced a 
new exponential-type distribution with constant, decreasing, increasing, upside-down bathtub and bathtub-shaped failure rate 
function. Gomez et al. (2014) have presented a new extension of the exponential distribution. The exponentiated exponential 
geometric (Louzada et al., 2014) and Kumaraswamy transmuted exponential (Afify et al., 2016) distributions. Mahdavi & Kundu 
(2017) have presented a new method for generating distributions with an application to the exponential distribution.   
Recently, the Alpha power transformed extended exponential distribution have introduced by (Hassan et al., 2018). Almarashi et al. 
(2019) have presented a new extension of exponential distribution with some statistical properties.  Abdulkabir & Ipinyomi, (2020) 
have introduced the Type II half-logistic exponentiated exponential distribution. 
Balakrishnan (1985) has developed the half logistic distribution having cumulative distribution function (CDF) and the probability 
density function (PDF) as 
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Also, the cumulative distribution function (CDF) and the probability density function (PDF) of the type-I half logistic-Generating 
family having shape parameter λ has introduced by (Cordeiro et al., 2015) are respectively given by 
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where ( ; )G t   and ( ; )g t  are CDF and PDF of baseline distribution, and   is the parameter space. 

The main goal of this work is to launch a more flexible distribution by inserting just one extra parameter to the NHE distribution 
(Nadarajah & Haghighi, 2011) to attain a better fit to the real data. We have discussed some distributional properties of the half-
logistic NHE distribution and its applicability. The remaining parts of the proposed study are arranged as follows. In Section 2 we 
present the new half-logistic NHE distribution and its various mathematical and statistical properties. We have employed three well-
known estimation methods to estimate the model parameters namely the maximum likelihood estimation (MLE), least-square 
estimation (LSE) and Cramer-Von-Mises (CVM) methods. For the maximum likelihood (ML) estimate, we have constructed the 
asymptotic confidence intervals using the observed information matrix are presented in Section 3. In Section 4, a real data set has 
been analyzed to explore the applications and suitability of the proposed distribution. In this section, we present the estimated value 
of the parameters and log-likelihood, AIC, BIC and CAIC criterion for ML, LSE, and CVM.  Finally, in Section 5 we present some 
concluding remarks. 

II. THE HALF LOGISTIC NHE DISTRIBUTION 
Nadarajah & Haghighi (2011) has defined the extension of the exponential distribution we have called this as NHE distribution. The 
CDF of NHE is defined as 
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The corresponding PDF can be written as 
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Substituting (2.1) and (2.2) in (1.1) and (1.2) we get the CDF of half-logistic NHE distribution, which is defined as 
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And the PDF of half-logistic NHE can be expressed as 
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Survival function is 
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A. Hazard Function of Half-logistic NHE  
Let t be survival time of a component or item and we want to calculate the probability that it will not survive for an additional time 

t  then, hazard rate function is, 
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where R(t) is a reliability function. 
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B. Reverse Hazard Function of half-logistic NHE 
The reverse hazard function of half-logistic NHE can be written as 

 
 

1 {1 (1 ) }

2 {1 (1 ) }

2 (1 )( )  ; , , 0,  0
1

x

rev x

f x x eh x x
F x e





  

 

    
  

 


   


 (2.7) 

 

C. Quantile Function 

Let X be a random variable having a distribution function  XF x .  Let  0,1p , the p-quantile of X, denoted by ( )XQ p  is 
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The random deviate generation for the half-logistic NHE can be expressed as, 
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D. Skewness and Kurtosis of half-logistic NHE Distribution  
The coefficient of skewness and kurtosis are important measures of dispersion in descriptive statistics. These measures are used 
mostly in data analysis to study the shape of the distribution or data set. The Bowley’s coefficient of skewness based on quartiles is, 
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Coefficient of kurtosis based on octiles given by (Moors, 1988) is 
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Plots of probability density function and hazard rate function of HL-NHE(α,β,λ) with different values of parameters are presented in 
Figure 1. 

 
Figure 1. Plots of PDF (left panel) and hazard function (right panel) for fixed α and different values of β and λ. 

III. METHOD OF ESTIMATION 
In this section we have presented three methods of estimation of the model parameters, which are as follows, 

A.  Maximum Likelihood Estimation (MLE) 

If 1 2, ,...... nx x x  is a random sample from ( , , )HL NHE     then the likelihood function,  , ,L     is given by, 
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Differentiating (3.1.1) with respect to α, β, and λ we get, 
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, for α, β, and λ, we get the maximum likelihood estimate

ˆ ˆˆ,   and    of the parameters α, β, and λ. Maximization of (3.1.1) can be obtained by using computer software like R, Matlab, 
etc. For the interval estimation of α, β, and λ and testing of the hypothesis, we have to calculate the observed information matrix. 
The observed information matrix for α, β, and λ can be obtained as 
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Let ( , , )     denote the parameter space and the corresponding MLE of   as ˆ ˆˆ ˆ( , , )    , then
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matrix. By applying the Newton-Raphson algorithm to maximize the likelihood (3.1) produces the observed information matrix and 
hence the variance-covariance matrix is obtained as, 
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Hence from the asymptotic normality of MLEs, approximate 100(1-α) % confidence intervals for α, β, and λ can be constructed as, 
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B.  Method of Least-Square Estimation (LSE) 
Swain et al. (1988) has introduced the LS and weighted least square estimators to estimate the parameters of Beta distributions. In 
this article, the same technique is applied for the half logistic NHE distribution. The least-square estimators of the unknown 
parameters α, β, and λ of half logistic NHE distribution can be obtained by minimizing  
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with respect to unknown parameters α, β, and λ. 
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 1 2 nX ,X ,  .., X  is a random sample of size n from a distribution function G(.). Therefore, in this case, the least square 

estimators of α, β, and λ say ˆ , ̂  and ̂  respectively, can be obtained by substituting (2.3) in (3.2.1) and minimizing 

  
2

{1 (1 ) }

{1 (1 ) }
1

1ˆ ˆˆ; , ,
11

j

j

xn

x
j

e jU X
ne





 

 
  

 

 


 
  

  
  (3.2.2) 

with respect to α, β, and λ. 
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where 
{1 (1 ) }( ) jx

jv x e
    

The weighted least square estimators of the unknown parameters can be obtained by minimizing 
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with respect to α, β, and λ. The weights wj are 
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Hence, the weighted least square estimators of α, β, and λ respectively, can be obtained by minimizing, 
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with respect to α, β, and λ. 
 
C.  Method of Cramer-Von-Mises (CVM) 
Another method of estimation is Cramér-von-Mises type minimum distance estimation, (Macdonald 1971) and it provides the 
experimental evidence that the bias of the estimator is smaller than the other minimum distance estimators. The CVM estimators of 
α, β, and λ are obtained by minimizing the function 
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Thus CVM estimators of α, β, and λ are obtained by solving the following equations simultaneously, 
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where {1 (1 ) }( ) ix
iB x e

   . 

IV. APPLICATIONS TO REALISTIC DATA SETS 
In this section, we demonstrate the applicability of half logistic NHE distribution using a real dataset used by earlier researchers. 
The following data represent the service times of 63 aircraft wind shield Kundu & Raqab (2009) and listed as follows:  
0.046, 1.436, 2.592, 0.140, 1.492, 2.600, 0.150, 1.580, 2.670, 0.248, 1.719,2.717, 0.280, 1.794, 2.819, 0.313, 1.915, 2.820, 0.389, 
1.920, 2.878, 0.487, 1.963, 2.950, 0.622, 1.978, 3.003, 0.900,2.053, 3.102, 0.952, 2.065, 3.304, 0.996, 2.117, 3.483, 1.003, 2.137, 
3.500, 1.010, 2.141, 3.622, 1.085, 2.163, 3.665,1.092, 2.183, 3.695, 1.152, 2.240, 4.015, 1.183, 2.341, 4.628, 1.244, 2.435, 4.806, 
1.249, 2.464, 4.881, 1.262, 2.543,5.140 
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We have calculated the MLEs directly by using optim() function (Schmuller, 2017) in  R software (R Core Team, 2020) and (Rizzo, 

2008) by maximizing the likelihood function (3.1). We have obtained ̂ = 0.1649, ̂ = 3.7152, ̂ = 0.5881 and corresponding valu
e of Log-Likelihood value is -98.09901. In Table 1 we have presented the MLE’s with their standard errors (SE) for α, β, and λ. 
     

Table 1 
MLE and SE for α, β, and λ 

Parameter MLE SE 

alpha 0.1649 0.7653    

beta 3.7152 9.5424    

lambda 0.5881 1.4300 

 
An estimate of the variance-covariance matrix by using MLEs, using equation (3.1.2) is 
 

ˆ ˆˆ ˆ ˆvar( ) cov( , ) cov( , ) 0.5856 -7.2774 -1.0766
ˆ ˆ ˆ ˆˆcov( , ) var( ) cov( , ) -7.2774 91.0568 13.1825
ˆ ˆ ˆ ˆ -1.0766 13.1825 2.0450ˆcov( , ) cov( , ) var( )

    

    

    

                

 

In Figure 2 we have displayed the graph of profile log-likelihood functions of ML estimates of α, β and λ. We have found that ML 
estimates of α, β, and λ exist and can be obtained uniquely. 
 

 
Figure 2. The plots of the profile log-likelihood function of ML estimates of α, β, and λ. 

For the test of goodness of fit and adequacy of the proposed model, Akaike information criterion (AIC), Bayesian information 
criterion (BIC) and Corrected Akaike information criterion (AICC) are calculated for the MLE, LSE and CVM estimators and 
presented in Table 2. It is observed that MLEs are superior to LSE and CVM.  

Table 2 
Estimated parameters, log-likelihood, AIC, BIC and AICC 

Method ̂  ̂  ̂  -LL AIC BIC AICC  

MLE 0.1650 3.7152 0.5881 98.0990 202.198 208.6274 202.5915  

LSE 0.2672 3.0175 0.4162 98.1202 202.2404 208.6698 202.6338  

CVE 0.3257 2.8967 0.3346 98.2193 202.4385 208.8679 202.832  
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To evaluate the goodness of fit of a given distribution we generally use the PDF and CDF plot. To get the additional information we 
have to plot Q-Q and P-P plots. In particular, the Q-Q plot may provide information about the lack-of-fit at the tails of the 
distribution, whereas the P-P plot emphasizes the lack-of-fit. From Figure 3 we have shown that the HL-NHE model fits the data 
very well. 
 

 
Figure 3. The P-P plot (left panel) and Q-Q plot (right panel) of HL-NHE distribution 

 
We have considered some alternatives distributions for the comparison of goodness of fit and flexibility of the observed distribution 
are as follows. 
 
A. Generalized Gompertz (GG) Distribution 
The pdf of GG distribution (El-Gohary, 2013) is  

      
1

1 1
1 ;   0, 0, 0

x xe ex
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B. Generalized Exponential Extension (GEE) Distribution 
The PDF of generalized exponential extension distribution (Lemonte, 2013) with parameters   ,  and  is 

      
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1 1 1

1 1 1 0
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C. Exponential Extension (EE) Distribution 
The density of exponential extension (EE) distribution (Nadarajah & Haghighi, 2011) with parameters α and λ is 

    1( ) 1 exp 1 1 ; 0, 0, 0.EEf x x x x              

D. Weibull Distribution 
The probability density function of Weibull (W) distribution is 
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xf x e x



 

 


    

 
 



International Journal for Research in Applied Science & Engineering Technology (IJRASET) 
                                                                                           ISSN: 2321-9653; IC Value: 45.98; SJ Impact Factor: 7.429 

                                                                                                                Volume 8 Issue IX Sep 2020- Available at www.ijraset.com 
     

©IJRASET: All Rights are Reserved 751 

E. Exponentiated Exponential Poisson (EEP) 
The probability density function of EEP (Ristić & Nadarajah, 2014) can be expressed as 
 

       1
1 exp 1 ; 0, 0, 0

1
x x xf x e e e x

e
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   
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
        
 

 

 
For the assessment of potentiality of the proposed model we have calculated the Akaike information criterion (AIC), Bayesian 
information criterion (BIC), Corrected Akaike information criterion (CAIC) and Hannan-Quinn information criterion (HQIC) and 
these are presented in Table 2.  

Table 2 
Log-likelihood (LL), AIC, BIC, CAIC and HQIC 

Model -LL AIC BIC CAIC HQIC 

HLNHE 98.0990 202.1980 208.6274 202.6048 204.7267 
GG  98.2316 202.4633 208.8927 202.8701 204.9920 

GEE 98.6627 203.3254 209.7548 203.7322 205.8541 
EE 100.1167 204.2335 208.5197 204.4270 205.9193 

Weibull 100.3177 204.6354 208.9217 204.8354 206.3212 
EEP 103.5468 213.0936 219.5230 213.5004 215.6224 

 
The Histogram and the density function of fitted distributions and Empirical distribution function with estimated distribution 
function of HLNHE, generalized Gompertz (GG), generalized exponential extension (GEE), exponential extension (EE), Weibull 
and EEP distributions are presented in Figure 4. 
 

 
Figure 4. The Histogram and the density function of fitted distributions (left panel) and Empirical distribution function with 

estimated distribution function (right panel). 
 
To compare the goodness-of-fit of the HLNHE distribution with other competing distributions we have presented the value of 
Kolmogorov-Simnorov (KS), the Anderson-Darling (AD) and the Cramer-Von Mises (CVM) statistics. These three statistics are 
widely used to compare non-nested models and to illustrate how closely a specific CDF fits the empirical distribution of a given data 
set.  From Table 4 the result shows that the HLNHE distribution has the minimum value of the test statistic and higher p-value 
hence we conclude that the HLNHE distribution gets quite better fit and more consistent and reliable results from others taken for 
comparison. 
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Table 4 
The goodness-of-fit statistics and their corresponding p-value 

Model KS(p-value) AD(p-value) CVM(p-value) 

HLNHE 0.0658(0.9310) 0.0329(0.9666) 0.2332(0.9785)  
GG 0.0694(0.9009) 0.0428(0.9197) 0.2890(0.9460)  
GEE 0.0958(0.5771) 0.0684(0.7633) 0.4040(0.8442)  
EE 0.1446(0.1296) 0.2949(0.1397) 1.3923(0.2044)  

Weibull 0.1087(0.4168) 0.0929(0.6222) 0.6426(0.6080)  
EEP 0.1431(0.1373) 0.2298(0.2167) 1.3052(0.2306)  

 
 

V. CONCLUSION 
In this article, we have introduced the three-parameter half logistic NHE distribution. We have provided the mathematical and 
statistical properties such as reliability function, hazard function, quantile function, skewness, and kurtosis of the model. 
Considering a real data set, we have explored the maximum likelihood estimates of the parameters and their corresponding 
confidence interval. Further other two well-known estimation methods namely least square estimates (LSE) and Cramer-Von-Mises 
(CVM) methods are employed to estimate the parameters of the proposed model. It is observed that MLEs are quite better than LSE 
and CVM methods. The comparison is done based on various information criteria such as AIC, BIC, CAIC, HQIC, and 
Kolmogorov-Simnorov (KS), the Anderson-Darling (AD) and the Cramer-Von Mises (CVM) statistics, and found that the proposed 
model is better as compared to generalized Gompertz (GG), generalized exponential extension (GEE), exponential extension (EE), 
Weibull and EEP distributions. We hope that this probability distribution may be an alternative in the field of survival analysis, 
probability distribution and applied statistics. 
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