

IN APPLIED SCIENCE & ENGINEERING TECHNOLOGY

Volume: 8 Issue: IX Month of publication: September 2020 DOI: https://doi.org/10.22214/ijraset.2020.31589

www.ijraset.com

Call: 🕥 08813907089 🔰 E-mail ID: ijraset@gmail.com

Optimization of Coil Spring using Design of Experiments (DOE)

Dhruv Muni¹, Mitesh Girase², Kishan Desai³, Siddharth Panchal⁴, Rutvik Trivedi⁵, Bhavik Trivedi⁶, Sagarsingh Kushwah⁷, Shreyashkumar Parekh⁸

1, 2, 3, 4, 5, 6, 7, 8 Mechanical Engineering Department, R. N. G. Patel Institute of Technology

Abstract: Problems occur in automobiles when driving bumps on road and insufficient road conditions. This work aims at improving the performance of the helical coil spring used in hatchback suspension cars via various spring parameters to make it more powerful than the current hatchbacks. A helical coil spring is used by 4-wheel cars that are part of the Indian automotive hatchback category. It is noted that due to heavy the weight of the springs and loads on it, the vehicle usually makes a drift over one side of the road. To omit such problems, the method of redesigning and optimizing is utilized. An optimizing technique well known as the design of experiments (DOE) is used for current work in ANSYS 18.1 workbench to optimize and omit the current problems in the helical coil spring. Also, Different materials are being compared to check the suitability and the better material for coil spring.

I. INTRODUCTION

The most crucial element of the suspension system is the suspension. Because it is the element that controls the shock and regulates the comfortability. In addition, it dissipates kinetic energy. Besides, the suspension system also improves the ride comfort, influence of rough road, and vehicle control (1). As of the most element, the suspension system commences various elements that are ball joints, arm rods, axles, and springs. Spring is the most flexible part of the suspension system and can be defined as the elastic body. It gets deformed when the load is applied on it, However, it returns to its original shape and size when the load is removed. This phenomenon happens because of the strain energy in the spring (2).

Nowadays, most of the light automotive vehicles have helical coil spring as the front part of its suspension system. While leaf spring is used on the rear part of the suspension system. The manufacturing process of leaf spring is that the specific material (Usually steel) wire is heated and the desired shape is produced (3). During designing any of the elements, defining the failure criteria is the most crucial part. The failure of the spring can be due to the poor property of the material, high cyclic load, fatigue load, etc. The withstand capacity of the spring to the load greatly depends on the number of turns, wire diameter (d), mean diameter (D), and the length of the spring (L).

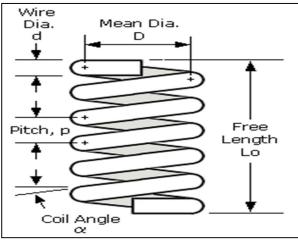


Figure 1: Nomenclature of coil spring

In the current work, the optimum number of turns, wire diameter (d), mean diameter (D), and the length of the spring (L) are obtained using the Design of Experiments (DOE) method. Also, different materials are compared based on the deformation capacity and shear stress criteria. So, which material is more suitable for the coil can be obtained.

ISSN: 2321-9653; IC Value: 45.98; SJ Impact Factor: 7.429 Volume 8 Issue IX Sep 2020- Available at www.ijraset.com

II. DESIGN OF EXPERIMENTS (DOE)

Design of Experiments (DOE) also known as Experimental design (ED) is classified as the applied statistics division, which deals with the preparation, execution, analysis, and interpretation of controlled tests to evaluate the parameter value factors or a group of parameters. DOE is a versatile method for data collection and interpretation which can be used in several experimental contexts (4). It makes it possible to control many input factors to decide how the desired output is affected (response). DOE can also detect essential connexions that can be overlooked when engaging with one element at a time by controlling many inputs at the same time. Both potential combinations (full factorial) or just a subset (fractional factorial) of possible combinations may be tested (5).

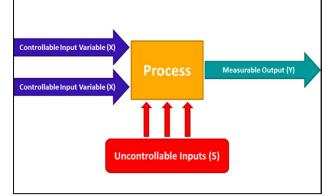


Figure 2: Design of Experiments

Taking an example of the Design of Experiments (DOE), consider a system having X and Y as the two controllable inputs, whereas S as the uncontrollable input. After performing the DOE, the results obtained will be optimum that is measurable output Y as shown in figure 1. So, it can be said that DOE is also a great optimizing tool that helps to obtain measurable inputs after receiving the controllable and uncontrollable inputs simultaneously.

III. METHODOLOGY

A. Selection of Material

Based on the mechanical properties such as Brinell Hardness, Modulus of Elasticity, Fatigue Strength, Poisson's Ratio, Shear Modulus, Ultimate Tensile Strength, Yield Tensile Strength, and Density the four material were selected for this work. The materials are ASTM A-227 Carbon-Spring Steel, ASTM A-228 Music Wire Spring Steel, ASTM A-231 Chrome-Vanadium Spring Steel, ASTM A-401 Chrome-Silicon Spring Steel (6).

B. Calculations

Deformation, strain energy, and shear stress were taken into consideration to optimize the dimensions as well as the better material for the helical coil spring. To evaluate the deformation, strain energy, and shear stress, the following equations were used (7-8):

$G = \frac{E}{2(1+\mu)}$		(1)
$\mathbf{K} = \frac{Gd^4}{64R^3n}$		(2)
δ = free length – solid length	(3)	
$F=k\times \delta$		(4)
$\Delta d = \frac{Fs}{K}$	(5)	
$T_{torsional} = \frac{16F_{SR}}{\pi d^3}$	(6)	
4Fs		

$$T_{direct \ shear \ stress} = \frac{4F_s}{\pi d^2} \tag{7}$$

 $T_{max} = T_{tortional} + T_{direct \ shear \ stress}$ (8)

ISSN: 2321-9653; IC Value: 45.98; SJ Impact Factor: 7.429 Volume 8 Issue IX Sep 2020- Available at www.ijraset.com

IV. DESIGN OF EXPERIMENTS (DOE)

The following steps were performed in ANSYS 18.1 workbench for the design of experiments.

A. Selection of Parameters

This is the first step to perform the DOE. The parameter governing the DOE for coil springs are Wire diameter, Mean diameter, Pitch, Length of spring, Number of turns, and Force.

B. Assigning Intervals to Different Parameters

The intervals were taken according to manufacturable value:

🔥 proj	ect A227 - Workbench	1					
File	Edit View Tools	Units Extensions Jobs	Help				
1	; 🛃 🔣 🗍 Pro	oject B2:Design of Exp	eriments	× 🔳	B3:Response S	urface 🗙 🧿 B4:0p	ptimization ×
🥖 Up	date 🛝 Preview 🖉	Clear Generated Data	esh				
Outline	of Schematic B2: Design	of Experiments	- 7 ×	Table of	Outline A8: P4 - v	viredia.	
		A	в^		A	В	
1			Enab	1	Name 🔻	Manufacturable Values ((mm) 🔻
2	🖃 🖌 Design of Expe	eriments		2	Level 1	10	
3	 Input Paramete 	rs		3	Level 2	11	
4	🖃 🚧 Static St	ructural (A1)		4	Level 3	12	Manufacturable Val
5	Cp P1	1 - turns		5	Level 4	13	
6	Cp P2	2 - height		6	Level 5	14	
7	Cp P3	3 - coilradius		7	Level 6	15	
8	Cp P4	1 - wiredia.		8	Level 7	16	
9	Cp PS	5 - coildia.		9	Level 8	17	
10	C P	10 - Force Y Component		10	Level 9	18	
11	Output Paramet	ters	~	-	New Level		
<			>				
Properti	es of Outline A8: P4 - wi	iredia.	▼ ₽ X	Chart: N	lo data		
	A	в					
1	Property	Value					
2	 General 						
3	Units	mm		I			
4	Туре	Design Variable					
5	Classification	Continuous					
6	Values						
7	Lower Bound	10					
8	Upper Bound	18					
9	Allowed Values	Manufacturable Values	-				
10	Number Of Levels	9					

Figure 3: Wire Diameter

File	Edit View Tools	Units Extensions Job	s Help				
1 🗠	🖇 🛃 🔣 📄 Pro	oject B2:Design of Ex	periments	× 🗾	B3:Response S	urface 🗙 🧿 B4:0	ptimization >
🗲 Up	date 🛝 Preview 🧟	Clear Generated Data	fresh				
Outline	of Schematic B2: Design	of Experiments	- 4 X	Table of	fOutline A5: P1 - t	turns	
		A	в^		А	В	
1			Enab	1	Name 🔻	Manufacturable Values	-
2	🖃 🖌 Design of Exp	eriments		2	Level 1	4	
3	 Input Parameter 		_	3	Level 2	5	
4	🖃 🚾 Static St	ructural (A1)		4	Level 3	6	_
5		L - turns		5	Level 4	7	
6		2 - height		6	Level 5	8	
7		3 - coilradius		7	Level 6	9	_
8	C P4	+ - wiredia.		8	Level 7	10	_
9	G P	- coildia.		*	New Level		_
10							
11	Output Parameters						
			>				
ropert	ties of Outline A5: P1 - tu	rns	▼ ₽ X	Chart: N	lo data		
	A	В					
1	Property	Value					
2	General						
3	Units						
4	Туре	Design Variable					
5	Classification	ification Continuous					
6	Values						
7	Lower Bound	4					
8	Upper Bound	10					
9	Allowed Values	Manufacturable Values	-				
10	Number Of Levels	7					

Figure 4: Number of turns

ISSN: 2321-9653; IC Value: 45.98; SJ Impact Factor: 7.429 Volume 8 Issue IX Sep 2020- Available at www.ijraset.com

A pro	ject A227 - Workbench							
File		Units Extensions Jobs	Help					
	🖇 🔜 🔍 🕞 Pro	ject B2:Design of Exp	eriments	× 🗖	B3:Response	Surface 🗙 🧿 I	84:Optimization	×
	and have been been a second se	Clear Generated Data 🔞 Refr						
	of Schematic B2: Design		- # ×	Table of	f Outline A9: P5 -	coildia	_	
Outline	of Schematic 52, Design	A	в	Table 0	A	B		
1		A	Enab					
2	🖃 🗸 Design of Expe		Enac	1	Name 💌		ilues (mm) 💌	
2	Input Paramete			2	Level 1 Level 2	100		
4	E Static St			3	Level 2 Level 3	110		
-+		- turns		5	Level 4	130		
		- height		6	Leve Level			
6		- coiradius		7	Level 6	150		
		- coiradius		*	New Level	150		
8		- wreda.		10	INCON LEVEL			
9		0 - colidia. 10 - Force Y Component						
10	Output Paramet							
11		ters	~					
Propert	ies of Outline A9: P5 - co		- 4 ×	Chart: I	lo data			
	A	B						
1	Property	Value						
2	General							
3	Units	mm						
4	Туре	Design Variable						
5	Classification	Continuous						
6	Lower Bound	100						
7	Upper Bound	100						
8	Allowed							
9	Values	Manufacturable Values	-					
10	Number Of Levels	6						

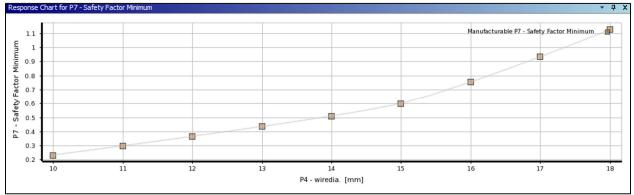
Figure 5: Coil diameter

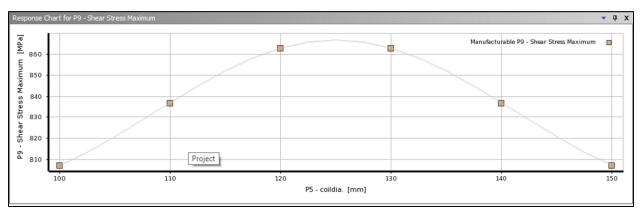
V. RESULTS AND DISCUSSION

Tables 1, 2, and 3 show the deformation comparison, strain energy comparison, and shear stress comparison for different materials.

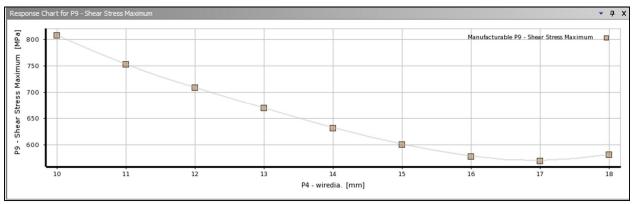
Sr. No.	Material	Deformation (mm)			
1	ASTM-A227 Carbon Spring Steel	94.382			
2	ASTM-A228 Music Wire	96.33			
3	ASTM-A231 Chrome-Vanadium	89.663			
4	ASTM-A401 Chrome-Silicon	89.663			

Table 1: Deformation Comparison


Sr. No.	Material	Strain Energy (mj)
1	ASTM-A227 Carbon Spring Steel	55.892
2	ASTM-A228 Music Wire	57.046
3	ASTM-A231 Chrome-Vanadium	53.098
4	ASTM-A401 Chrome-Silicon	53.098


Table 3: Shear stress comparison

Sr. No.	Material	Shear Stress
		(MPa)
1	ASTM-A227 Carbon Spring Steel	435
2	ASTM-A228 Music Wire	435
3	ASTM-A231 Chrome-Vanadium	435
4	ASTM-A401 Chrome-Silicon	435


Figure 6. 7, and 8 shows Variation of Safety Factor with respect to Wire Diameter, Variation of Mean Diameter with respect to Shear Stress, and Variation of Wire Diameter with respect to Shear Stress.

ISSN: 2321-9653; IC Value: 45.98; SJ Impact Factor: 7.429 Volume 8 Issue IX Sep 2020- Available at www.ijraset.com

VI. CONCLUSION

After performing DOE of the helical coil suspension spring, the following were the findings:

- 1) Deformation: The minimum deformation is observed with magnitude of 89.663 mm in the ASTM-A231 & ASTM-A401 materials.
- 2) Strain Energy: The maximum amount of strain energy generated using ASTM-A228 material is 57.046 mJ which shows good energy absorption characteristics therefore A-228 absorbs more strain energy compared to other materials.

3) Shear Stress: The values of shear stress are almost the same for all four materials with the magnitude of 435.81 MPa

Therefore, it was concluded that ASTM A-228, A-231 & A-401 have better results over the existing material which is A-227 used currently in hatch-backs.

REFERENCE

- Putra, T. E., Husaini, & Machmud, M. N. (2020). Predicting the fatigue life of an automotive coil spring considering road surface roughness. Engineering Failure Analysis, 104722. doi:10.1016/j.engfailanal.2020.104722
- [2] Zhou, C., Chi, M., Wen, Z., Wu, X., Cai, W., Dai, L., ... Li, M. (2019). An investigation of abnormal vibration induced coil spring failure in metro vehicles. Engineering Failure Analysis, 104238. doi:10.1016/j.engfailanal.2019.104238
- [3] Sun, W., Thompson, D., & Zhou, J. (2019). A mechanism for overcoming the effects of the internal resonances of coil springs on vibration transmissibility. Journal of Sound and Vibration, 115145. doi:10.1016/j.jsv.2019.115145
- [4] Zhou, J., Le, Z., & Lapchuk, A. (2020). Impact of structure and system parameters for speckle suppression in laser pico-projectors based on the tracked moving flexible DOE loop. Optics Communications, 475, 126205. doi:10.1016/j.optcom.2020.126205
- [5] Farahmand, F., & Parichehreh, V. R. (2006). Stress analysis and optimal design of pedicle screws using finite element method and DOE approach. Journal of Biomechanics, 39, S132–S133.
- [6] Pastorcic, D., Vukelic, G., & Bozic, Z. (2019). Coil spring failure and fatigue analysis. Engineering Failure Analysis. doi:10.1016/j.engfailanal.2019.02.017
- [7] Pawar, H. B., & Desale, D. D. (2018). Optimization of Three Wheeler Front Suspension Coil Spring. Procedia Manufacturing, 20, 428–433.
- [8] Sagarsingh Kushwah, et. al. "A Review Article on Design, Analysis and Comparative Study of Conventional and Composite Leaf Spring." IOSR Journal of Mechanical and Civil Engineering (IOSR-JMCE), 17(4), 2020, pp. 18-22.

45.98

IMPACT FACTOR: 7.129

INTERNATIONAL JOURNAL FOR RESEARCH

IN APPLIED SCIENCE & ENGINEERING TECHNOLOGY

Call : 08813907089 🕓 (24*7 Support on Whatsapp)