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Abstract: It is widely observed that the items like fruits, flowers, green vegetables, dairy products etc are either kept in farms, in 
flower shops, in supermarkets or in cold storages. The demand of such items is very high and at the same time it is also 
decreased owing to spoilage or decay. So we cannot ignore the effect of amelioration and deterioration in the inventory 
management system. Here we developed an inventory model for both ameliorating and deteriorating items. The deterioration 
rate is time-varying and amelioration rate is two-parameter Weibull distributed. The assumption of constant demand rate may 
not be always appropriate for many inventory goods like milk, vegetables etc., the age of inventory has negative impact on 
demand due to loss of consumer confidence on quality of such products. Here demand rate is considered as a cubic function of 
time and shortages are allowed which are fully backlogged. The model is solved with salvages value associated to the units 
deteriorating during the cycle. Finally the model is illustrated with the help of a numerical example, some particular cases are 
derived and a comparative study of the optimal solutions is furnished graphically to analyze the optimal solutions towards 
different nature of demands. 
Keywords: Inventory, deteriorating items, ameliorating items, Weibull distributed, time-varying, cubic demand, salvages value 
and shortages. 
Subject classification: AMS Classification No. 90B05 

I. INTRODUCTION 
It is natural that goods like fruits, flowers, green vegetables, dairy products, radioactive substances etc deteriorate over time. 
Normally goods deteriorate during storage period. Several researchers have addressed the importance of the deterioration 
phenomenon in their field of applications; as a result, many inventory models with deteriorating items have been developed. But 
due to lack of considering the influence of demand, the ameliorating items for the amount of inventory is increasing gradually. 
Amelioration is a natural phenomenon observing in much life stock models. A few researchers have focused on ameliorating 
system. Professionals did not give much attention for fast growing animals like broiler, ducks, pigs etc. in the poultry farm, 
highbred fishes in berry (pond) which are known as ameliorating items. When these items are in storage, the stock increases (in 
weight) due to growth of the items and also decrease due to death, various diseases or some other factors. At the point when these 
things are away, the stock increases (in weight) because of development of the things. Furthermore the stock diminishes because of 
death, different illnesses or due to some different components. Hwang [1997] developed an inventory model for ameliorating items 
only. Again Hwang [2004] added to a stock model for both ameliorating and deteriorating things independently. Mallick et al. 
[2018] has considered a creation inventory model for both ameliorating and deteriorating items. Many researchers like Moon et 
al[2005], Law et al [2006],  L-Q ji[2008], Valliathal et al[2010], Chen [2011], Nodoust [2017] are few noteworthy. In this paper, 
effort is given to discuss on an economic order quantity (EOQ) inventory model for both ameliorating and deteriorating items 
where the environment of Amelioration followed by Weibull Distribution to describe the different life spans effectively by 
utilizing the changes of parameters. 
Biswaranjan-Mandal [2010] analyzed the EOQ  inventory  model  for  Weibull  distributed  deteriorating items  under ramp  type  
demand and  shortages.  Sahoo et  al. [2010] formulated an EOQ model for price dependent demand rate  and time-varying  holding 
cost.  Hung [2011] have used generalized type demand, deterioration  and backorder  rates. Mishra  and Singh  [2011] find  an 
inventory  model for  ramp type  demand,  and  time  dependent  deteriorating  items  with salvage value and shortages.   
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According to Mishra and Singh [2011]  an  inventory  model  for  deteriorating  items  with uniform replenishment rate with power 
form demand, the rate of  deterioration  is  cubic  polynomial.  Anil  Kumar  Sharma et.al.  [2012]  are  considered  an  inventory  
model  with  time dependent  holding  cost.  Babu  Krishnaraj  and  Ramasamy [2012]  find  an inventory  model with  power 
demand  pattern for  Weibull  deterioration  rate  without  shortages.  Mukesh kumar et  al. [2012] are considered  a deterministic 
inventory model  for  deteriorating  items  with  price  dependent  used demand rate and time-varying holding cost under trade 
credit.  
Tripathy and Pradhan [2012] examined is used salvage value and developed an inventory model for three parameter Weibull 
distribution  deterioration  rate  under  permissible  delay  in payments.  Amutha  and  Chandrasekaran  [2013]  studied  on 
deteriorating  items  with  price  dependent  demand,  three parameter  Weibull  distribution  deterioration  rate.   
Pratibha Yadav  [2013] have  used cubic  demand rate  and  production rate  is  variable  with  Weibull  distribution. Sharma et al 
[2015], Biswaranjan Mandal [2020] and many others developed inventory models assuming demand rate as cubic function of time. 
Again Poonam Mishra and Shah [2008] studied an EOQ model for inventory management of time dependent deteriorating items 
with salvage value. Jaggi et al [1996] studied an EOQ model for deteriorating items with salvage value assuming deterioration and 
demand rate in constant behaviour. Karthikeyan et al [2015] developed a model to determine the optimum order quantity for 
constant deteriorating items with cubic demand and salvage value. Their model does not allow for time-varying deterioration and 
shortages, which would not make applicable in real word.  
For these sort of situations, efforts have been made to develop a realistic inventory model with time-varying deterioration rate and 
two-parameter Weibull distributed ameliorating rate.  
The demand rate is considered as a cubic function of time. The model is solved with salvages value associated to the units 
deteriorating during the cycle. Shortages are allowed and fully backlogged. Finally the model is illustrated with the help of a 
numerical example, some particular cases are derived and a comparative study of the optimal solutions is furnished graphically to 
analyze the optimal solutions towards different nature of demands. 
 

II. NOTATIONS AND ASSUMPTIONS 
The mathematical models are developed under the following notations and assumptions: 
 
A. Notations 
1) I(t) : On hand inventory level at time t. 
2) R(t) : Demand rate. 
3) Q   :  The maximum inventory level during the cycle. 
4) ( )t : Time-varying deterioration rate. 
5) A(t) : The ameliorating rate at time t. 
6) T     : The fixed length of each production cycle. 
7) 0A   : The ordering cost per order during the cycle period. 

8) cp   : The purchasing cost per unit item. 

9) ch : The holding cost per unit item. 

10) cd    : The deterioration cost per unit item. 

11) ca    : The cost of amelioration per unit item. 

12) sc  :   The shortage cost per unit item. 
13) OC :  Ordering cost per order. 
14) PC : Purchasing cost over the cycle period. 
15) HC : Holding cost over the cycle period. 
16) CD: Cost due to deterioration over the cycle period. 
17) AMC : Amelioration cost over the cycle period. 
18) SV :  Salvage value  over the cycle period 
19) CS : Cost due to shortage over the cycle period. 
20) TC   : Average total cost per unit time. 
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B. Assumptions 
1) The inventory system included only one item. 
2) The demand rate is time dependent cubic function 
R(t) = a + bt + c 2t  + d 3t , a, b, c, d   0 where a is the initial demand rate, b is the initial rate of change of demand, c is the rate at 
which the demand rate increases and d is the rate at which the change in the demand rate itself increases. 
3) The time-varying deterioration rate is given by 

( ) ,0 1o ot t     . 

4) A(t) is the amelioration rate following Weibull distributed  
1( ) , 0 1, 1A t t       , where   is the shape parameter and   is the scale parameter. 

5) Lead time is zero. 
6) Shortages are allowed and fully backlogged. 
7) Replenishment rate is infinite. 
8) The time horizon is infinite. 
9) The salvage value k cd  , 0 1k   is associated with deteriorated units during a cycle time. 

III. FORMULATION AND SOLUTION OF THE MODEL 
In this model, we consider an inventory model starting with no shortage. Replenishment occurs at time t=0 and the inventory level 
attains its maximum. From t = 0  to t = 1t  the stock will be diminished due to the effect of deterioration, amelioration and demand, 

and ultimately falls to zero at t = 1t . The shortages occur during time period [ 1t , T] which are fully backlogged. The behaviour of the 

model at any time t can be described by the following differential equations:                    

1
( ) ( ( ) ( )) ( ) ( ), 0dI t t A t I t R t t t

dt
                                               (3.1) 

          And     1
( ) ( ),dI t R t t t T

dt
                        (3.2) 

The initial condition is (0)I Q  and 1( ) 0I t           (3.3) 

Putting the values of ( ) ,0 1o ot t     , 1( ) , 0 1, 1A t t        and 

 R(t) = a + bt + c 2t  + d 3t , a, b, c, d   0, we get  

                   1 2 3
1

( ) ( ) ( ) ( ), 0o
dI t t t I t a bt ct dt t t

dt
                (3.4) 

        And   2 3
1

( ) ( ),dI t a bt ct dt t t T
dt

                                             (3.5) 

Now solving the equations (3.4) and (3.5) using the initial condition (3.3) and neglecting the second and higher powers of o and 

[since 2( )oO  and 2( )O  are very small as 0 , 1o   ], we get 

       I(t) = 2 2 3 3 4 4 3 2 3
1 1 1 1 1 1( ) ( ) ( ) ( ) ( 3 2 )

2 3 4 6
oab c da t t t t t t t t t t t t

            

                + 4 2 2 4 5 3 2 5 6 4 2 6
1 1 1 1 1 1( 2 ) (3 5 2 ) (2 3 )

8 30 24
o o ob c dt t t t t t t t t t t t  

        ,      

                - 1 1 2 2 3 3 4 4
1 1 1 1( ) ( ) ( ) ( )

1 2 3 4
a b c dt t t t t t t t          
   

             
   

  

               + 2 2 3 3 4 4
1 1 1 1( ) ( ) ( ) ( )

2 3 4
b c da t t t t t t t t t t t t             , 10 t t       (3.6) 
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And I(t) = 2 2 3 3 4 4
1 1 1 1( ) ( ) ( ) ( )

2 3 4
b c da t t t t t t t t       , 1t t T          (3.7) 

Since I(0) = Q, we get from equation (3.6) the following expression 

                   Q = 2 3 4 5 6
1 1 1 1 1 1( ) ( )

2 3 6 4 8 10 12
o o o oa b c db c dat t t t t t   

         

                         1 2 3 4
1 1 1 11 2 3 4

a b c dt t t t      
   

      
   

                      (3.8) 

A. Cost Components 
The total cost over the period [0,T] consists of the following cost components : 
1) Ordering cost (OC) over the period [0,T] = 0A (fixed) 

2) Purchasing cost (PC) over the period [0,T] = cp I(0) = cp Q 

                       = cp { 2 3 4 5 6
1 1 1 1 1 1( ) ( )

2 3 6 4 8 10 12
o o o oa b c db c dat t t t t t   

         

                         1 2 3 4
1 1 1 11 2 3 4

a b c dt t t t      
   

      
   

} 

3) Holding cost (HC) for carrying inventory over the period [0,T] = 
1

0

( )
t

ch I t dt  

                      = 2 3 4 5 6 7
1 1 1 1 1 1{ ( ) ( )

2 3 4 12 5 15 18 21
o o o o

c
a b c da b c dh t t t t t t   

          

             2 3 4 5
1 1 1 1 }

( 1)( 2) ( 1)( 3) ( 1)( 4) ( 1)( 5)
a b c dt t t t      

       
      

       
 

4) Cost due to deterioration (CD) over the period [0,T]  = 
1

0

( )
t

c od tI t dt  

                                            = 3 4 5 6
1 1 1 1{ }

6 8 10 12c o
a b c dd t t t t                                        

5) Salvage cost (SV) over the period [0,T]  = k 3 4 5 6
1 1 1 1{ }

6 8 10 12c o
a b c dd t t t t     

6) The amelioration cost (AMC) over the period [0,T] = 
1

1

0

( )
t

ca t I t dt   

                 = 1 2 3 4
1 1 1 1{ }

1 2 3 4c
a b c da t t t t   

   
     

   
  

7) Cost due to shortage (CS) over the period [0,T]   = sc
1

( ) ( )
T

t

T t R t dt   

                                    =
1 1

2 3( ) ( ) ( )( )
T T

t t

T t R t dt T t a bt ct dt dt        

= sc 2 2 3 2 3
1 1 1 1{ ( 2 ) ( 3 2 )

2 6
a bT Tt t T Tt t     + 4 3 4 5 4 5

1 1 1 1( 4 3 ) ( 5 4 )}
12 20
c dT Tt t T Tt t      
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The average total cost per unit time of the system during the cycle [0,T] will be 

TC( 1t ) = 
1
T

 [ OC +PC+HC+CD-SV+AMC+CS] 

 =
1
T

[ 0A  + cp { 2 3 4 5 6
1 1 1 1 1 1( ) ( )

2 3 6 4 8 10 12
o o o oa b c db c dat t t t t t   

       1 2
1 11 2

a bt t  
 

  
 

 

3 4
1 13 4

c dt t  
 

  
 

} + 2 3 4 5 6 7
1 1 1 1 1 1{ ( ) ( )

2 3 4 12 5 15 18 21
o o o o

c
a b c da b c dh t t t t t t   

             

2 3 4 5
1 1 1 1 }

( 1)( 2) ( 1)( 3) ( 1)( 4) ( 1)( 5)
a b c dt t t t      

       
      

       
 

+ 3 4 5 6
1 1 1 1(1 ){ }

6 8 10 12c o
a b c dd k t t t t     + 1 2 3 4

1 1 1 1{ }
1 2 3 4c

a b c da t t t t   
   

     
   

+ sc

2 2 3 2 3
1 1 1 1{ ( 2 ) ( 3 2 )

2 6
a bT Tt t T Tt t     + 4 3 4 5 4 5

1 1 1 1( 4 3 ) ( 5 4 )}
12 20
c dT Tt t T Tt t     ]   

                                                                                                                                            (3.9)                                                                                                

For minimum, the necessary condition is 1

1

( ) 0dTC t
dt

  

This gives cp { 2 3 4 5
1 1 1 1 1( ) ( )

2 2 2 2
o o o oa b c da bt c t d t t t   

       1
1 1a t b t      

2 3
1 1c t d t     } + 2 3 4 5 6

1 1 1 1 1 1{ ( ) ( )
3 3 3 3

o o o o
c

a b c dh at bt c t d t t t   
             

1 2 3 4
1 1 1 1 }

( 1) ( 1) ( 1) ( 1)
a b c dt t t t      
   

      
   

+ 2 3 4 5
1 1 1 1

(1 ) { }
2

c od k at bt ct dt 
    

+ 1 2 3
1 1 1 1{ }ca at bt ct dt         + 2 3

1 1 1 1 1 1 1{ ( ) ( ) ( ) ( )} 0sc a t T bt t T ct t T dt t T                                                 

     (3.10)    

 For minimum the sufficient condition 
2

1
2

1

d TC(t )
dt

 >0 would be satisfied. 

 Let 1 1t t    be the optimum value of 1t . 

The optimal values *Q  of Q and *TC  of TC are obtained by putting the value *
1 1t t from the expressions (3.8) and (3.9).    

 
IV. PARTICULAR CASES 

1) If the demand rate is quadratic function of time then 0d    
From (3.8), the total amount of inventory Q becomes 

Q = 2 3 4 5
1 1 1 1 1( )

2 3 6 8 10
o o oa b cb cat t t t t  

      1 2 3
1 1 11 2 3

a b ct t t    
  

    
  

       (4.1) 

   From (3.9), the average total cost per unit time of the system during the cycle [0,T] becomes 

  TC( 1t ) =
1
T

[ 0A  + cp { 2 3 4 5
1 1 1 1 1( )

2 3 6 8 10
o o oa b cb cat t t t t  

     1 2
1 11 2

a bt t  
 

  
 

3
13

c t 





} +

2 3 4 5 6
1 1 1 1 1{ ( )

2 3 4 12 15 18
o o o

c
a b ca b ch t t t t t  

     2 3 4
1 1 1 }

( 1)( 2) ( 1)( 3) ( 1)( 4)
a b ct t t    

     
    

     
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+ 3 4 5
1 1 1(1 ){ }

6 8 10c o
a b cd k t t t    + 1 2 3

1 1 1{ }
1 2 3c

a b ca t t t  
  

   
  

+  

sc 2 2 3 2 3
1 1 1 1{ ( 2 ) ( 3 2 )

2 6
a bT Tt t T Tt t     + 4 3 4

1 1( 4 3 )}
12
c T Tt t  ]                      (4.2)                                                   

The equation (3.10) becomes  

cp { 2 3 4
1 1 1 1( )

2 2 2
o o oa b ca bt c t t t  

     1
1 1a t b t     2

1c t   }  

       + 2 3 4 5
1 1 1 1 1{ ( )

3 3 3
o o o

c
a b ch at bt c t t t  

     1 2 3
1 1 1 }

( 1) ( 1) ( 1)
a b ct t t    
  

    
  

 

          + 2 3 4
1 1 1

(1 ) { }
2

c od k at bt ct 
  + 1 2

1 1 1{ }ca at bt ct       

                                                              + 2
1 1 1 1 1{ ( ) ( ) ( )} 0sc a t T bt t T ct t T             (4.3) 

This gives the optimum value of 1t . 

2) If the demand rate is linear trended function of time then c = 0 and 0d    
From (3.8), the total amount of inventory Q becomes 

             Q = 2 3 4
1 1 1 12 6 8

o oa bbat t t t 
    1 2

1 11 2
a bt t  
 

  
 

                                      (4.4) 

   From (3.9), the average total cost per unit time of the system during the cycle [0,T]  becomes 

      TC( 1t ) =
1
T

[ 0A  + cp { 2 3 4
1 1 1 12 6 8
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   1 2

1 11 2
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 
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 

}  

              + 2 3 4 5
1 1 1 1{

2 3 12 15
o o

c
a ba bh t t t t 

   2 3
1 1 }

( 1)( 2) ( 1)( 3)
a bt t  

   
  

   
 

                    + 3 4
1 1(1 ){ }

6 8c o
a bd k t t   + 1 2

1 1{ }
1 2c

a ba t t 
 

 
 

 

                             + sc 2 2 3 2 3
1 1 1 1{ ( 2 ) ( 3 2 )

2 6
a bT Tt t T Tt t     } ]                                (4.5)  

The equation (3.10) becomes  

cp { 2 3
1 1 12 2

o oa ba bt t t 
   1

1 1a t b t     } + 2 3 4
1 1 1 1{

3 3
o o

c
a bh at bt t t 

   1
1( 1)

a t 





 2
1 }

( 1)
b t 





+

2 3
1 1

(1 ){ }
2

c od k at bt 
 + 1

1 1{ }ca at bt   + 1 1 1{ ( ) ( )} 0sc a t T bt t T               

                                                                                                                                   (4.6) 
This gives the optimum value of 1t . 

3) If the demand rate is constant then b = 0, c=0 and 0d    
From (3.8), the total amount of inventory Q becomes 

 

                                    Q = 3
1 16

oaat t
  1

11
a t 





                                                    (4.7) 

From (3.9), the average total cost per unit time of the system during the cycle [0,T]  becomes 
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TC( 1t ) =
1
T

[ 0A  + cp { 3
1 16

oaat t
 1

11
a t 





} + 2 4
1 1{

2 12
o

c
aah t t

 2
1 }
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 


 
 

                    + 3
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




+ 2 2

1 1( 2 )
2
sc a T Tt t  ]                                   (4.8)                                                   

The equation (3.10) becomes  

cp { 2
11

2
o t

 1t
 } + 3

1 1{
3
o

ch t t
 1

1( 1)
t 





 } + 2

1
(1 )
2

c od k t 
+ 1ca t  + 1( ) 0sc t T                                                                                                                               

                                                                                                                                        (4.9) 
This gives the optimum value of 1t . 

 
V. NUMERICAL EXAMPLE 

 To illustrate the developed inventory model, let the values of parameters be as follows: 

0A = $500 per order; a = 30; b = 20; c = 10; d = 3; o  = 0.01;   = 0.001;   = 2; k = 0.1;        cp  = $5 per unit; ch  = $12 per 

unit; cd  = $4 per unit; ca  = $7 per unit; sc  = $15 per unit; T = 1 year 

Solving the equation (3.10) with the help of computer using the above parameter values, we find the following optimum outputs   
*
1t  = 0.37 year; *Q = 12.66 units and *TC = Rs 729.20 

It is checked that this solution satisfies the sufficient condition for optimality. 
 
A. Comparison Of Inventory Models Between Varying Demand Rates 
The comparative study is also furnished to illustrate the special cases of the inventory model by varying demand rates. 

. 
Fig. 1: Demand Rate vs Optimal Inventory Total Cost  

 

 
Fig. 2: Demand Rate vs Optimal Inventory Level 
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Fig 3: Demand Rate vs Holding Cost 

 
B. Concluding Remarks 
In this study, an inventory model has been framed for time-varying deteriorating items under Weibull distributed amelioration 
environment with cubic demand rate in nature. The salvage value has been incorporated for deteriorating items. Shortages are 
allowed which are fully backlogged. The models are developed analytically as well as computationally with graphical 
representation.  
Efforts are given on comparative study graphically between optimal inventory total cost, optimal inventory level and holding cost 
considering cubic, quadratic, linear and constant nature of demand rates. Analyzing Fig. 1, Fig. 2 and Fig. 3, it is observed that 
optimality of inventory total cost, inventory level and holding cost are moderately changing for cubic, quadratic and linear trended 
demand rates, whereas these are changing significantly towards the model with constant demand in nature. The total cost is 
minimum for constant demand rate in compare to other natures of demand rates. So demand parameters are most important for 
estimation of optimal solution of the inventory model and we need adequate attention to estimate these parameters.   
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