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Abstract: The design of ferritic steel welding alloys to fit the ever expected properties of newly evolved  steels is not a very easy 
task. It is traditionally attained by experimental trial and error, changing compositions and welding conditions until a sufficient 
result is established.   
Savings in the economy and time might be achieved if the trial process could be minimised. The present work outlines the use of 
an artificial neural network to model the charpy toughness of ferritic steel weld deposits from their chemical compositions, 
welding conditions and heat treatments.  
The development of the General regression neural network (GRNN) models is explained,  as is the confirmation of their 
metallurgical principles and precision. 
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I. INTRODUCTION 
The charpy impact test provides the basic design data essential in both the specification and acceptance of welding materials.  
Although the measurements involved are simple,  their values depend in a complicated way on the chemical compositions,  the 
welding parameters and the heat treatments.   There is no common fundamental or experimental model  capable of estimating the 
toughness parameters as a function of all these variables  [1,2]. 
 The difficulty is the complexity of the nonlinear relationship between input variables and charpy toughness.  The physical models 
for strengthening mechanisms are not sufficiently sophisticated [3]  and the linear regression methods used traditionally   are not 
representing the real behaviour which is far from linear when all the variables are taken into account. 
The aim of this work was to use GRNN to empirically model and interpret the dependence of the charpy toughness of steel weld 
deposits as a function of many input variables. 
The General regression neural network is capable of realising a great variety of nonlinear relationships of considerable complexity. 
Data are presented to the  GRNN in the form of input and output parameters,.  As in regression analysis, the results then consist of  
the regression coefficients and a specification of the kind of function which in combination with the weights relates the independent 
or input variables to the dependent or output variables. 
The design of a model using the GRNN  method requires  a large database of experimental measurements was assembled for neural 
network analysis of ferritic steel welds. 

II. MODELLING WORK 
Database for Modelling: All of the data collected are from weld deposits in which the joint is designed to minimize dilution from the 
base metal, to enable specifically the measurement of all`weld metal properties. Furthermore, they all represent electric arc welds 
made using one of the following processes: manual metal arc (MMAW), submerged arc welding (SAW) and tungsten inert gas 
(TIG).  
The welding process itself was represented only by the level of heat input. The data were collected from a large number of sources.( 
Table 1). 
The aim of the neural network analysis was to predict the Charpy Toughness as a function of a large number of variables, including 
the chemical compositions, the welding parameters and  heat treatments. As a consequence, the Charpy Toughness database consists 
of 3449 separate experiments with 20 input variables. 
In the present work, a neural network method is used as a Generalised Regression Neural Network[4]. All GRNN networks have 20 
inputs, 1725 neurons in the first hidden layer, 2 neurons in the second hidden layer and 1 neuron in the output layer. (Figure.1) 
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Figure 1. The architecture of Generalized Regression Neural Network 

The hundred and thousand of models were trained with this neural network method in statistica software. The training errors, 
Validation errors (or Selection errors) and testing errors of training dataset(1725), validation data set(862) (or selection dataset) and 
testing dataset(862) of Charpy Toughness (CT) were compared. The lowest traning errors models were selected because they are 
best for practical applications.  

Table 1  The 20 Input variables used in the analysis of the Charpy Toughness 
Variables Min Max Average StDev Variables Min Max Average StDev 

C wt% 0.022 0.19 0.022 0.19 O ppm 63 1535 399.6638 110.6312 

Si wt% 0.01 1.63 0.01 1.63 Ti ppm 0 770 96.0337 132.9401 

Mn wt% 0.23 2.31 0.23 2.31 N ppm 0 979 77.5725 60.8648 

S wt% 0.002 0.14 0.002 0.14 B ppm 0 200 13.1739 33.4533 

P wt% 0.003 0.25 0.003 0.25 Nb ppm 0 1770 37.6917 133.0933 

Ni wt% 0 10.8 0 10.8 HI   kJ mm-1 0.6 6.6 1.1954 0.6596 

Cr wt% 0 11.78 0 11.78 IPT C 20 350 199.0003 31.0232 

Mo wt% 0 1.54 0 1.54 PWHTT C 0 760 186.1773 249.8889 

V wt% 0 0.53 0 0.53 PWHTt  h 0 100 3.3429 6.6257 

Cu wt% 0 2.18 0.0638 0.2128 TTCT  K 77 409 227.8425 38.3343 

 Charpy Toughness 
J 

0 300 72.714 42.8411 
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III. RESULTS AND DISCUSSION 
The normal behaviour of the Predicted Charpy Toughness and Observed Charpy Toughness are observed in the Figure. 2 for 
Training data, Validation data and Testing data. Training of the model is excellent by GRNN method. 

 
Figure  a  Training Data for GRNN model of Charpy Toughness 

 
Fig  b  Validation Data for GRNN model of Charpy Toughness 

 
Fig c   Test Data for GRNN model of Charpy Toughness 

Figure  2 Training data, validation data and test data of the Best GRNN model for Charpy Toughness. 
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The best model of GRNN has training error 0.011404, validation error (selection error) 0.018101, and testing error 0.018669. This 
model is used for getting the results in form of various response graphs to understand the trend between the input variables and 
output variable(Charpy Toughness).(Figure 3) 

  
a Charpy Toughness (J) – Carbon(wt %) b Charpy Toughness (J) – Silicon(wt %) 

  
c Charpy Toughness (J) – Manganese (wt %) d Charpy Toughness (J) – Sulphur (wt %) 

  
e Charpy Toughness (J) – Phosphorus(wt %) f  Charpy Toughness (J) – Nickel(wt %) 
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g Charpy Toughness (J) – Chromium(wt %) h Charpy Toughness (J) – Molybdenum(wt %) 

 
 

i Charpy Toughness (J) – Vanadium(wt %) j Charpy Toughness (J) – Copper(wt %) 

  
k Charpy Toughness (J) – Oxygen(ppm) l Charpy Toughness (J) – Titanium(ppm) 
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m Charpy Toughness (J) – Nitrogen(ppm) n Charpy Toughness (J)– Boron(ppm) 

  
o Charpy Toughness (J) – Niobium(ppm) p Charpy Toughness (J) – Heat Input(kJ mm-1) 

 

  

q Charpy Toughness (J )– Interpass temperature(C) 
 

r Charpy Toughness (J – Post-weld heat treatment( 
temperatureC) 
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s Charpy Toughness (J) – Post-weld heat treatment time(h) t Charpy Toughness (J) – Testing temperature for Charpy 
toughness(K) 

Figure 3 Response graphs(a to t) of Input variables Charpy Toughness of Ferritic Steel Welds 

The influence of each of the variables on the Charpy toughness of welding alloys, which is discussed here. The Charpy toughness, 
initially decrease from 78.1 J to 76.8 J, between the 0.02% C to 0.065% C. The Carbon concentration of the welds in between 
0.065% to 0.0134%, the Charpy toughness increases very high from 76.8 J to 100.9 J. Between 0.0134% C to 0.19% C, the Charpy 
Toughness is a constant value of 100 J after a slight increase of 0.9 J. In the case of silicon between more than 0.0% to 0.75%, there 
is an increase of the 73 J to 77.8 J in the Charpy toughness and then maximum 77.8 J at 0.48% Si.   Between  0.75% to 0.95% Si, 
the Charpy toughness decreases from 73 J to 57 J. At 1.43%, the Charpy toughness increases to 67.8 J and then decreases to 50 J at 
1.62% Si. The trend of manganese shows the increase in the Mn% from 0.22% to 0.9%, the value of the Charpy toughness is also 
increased from 85.6 J  to 87.1 J.  
The Charpy toughness has a maximum value of 87.1 J between 0.58% Mn to 0.74% Mn.  After 1.96% Mn, there is a reduction in 
the Charpy toughness from 83J to 74J at 2.3 Mn. The sulphur shows a maximum value of the Charpy toughness 76.6 J, upto 
0.02%S. After 0.02% S, increase in sulphur decreases in the Charpy toughness from 76.6 J to 50.3 J at 0.09% S. Morethan 0.09% S 
gives constant Charpy toughness 50.3 J.  The Phosphorus gives the maximum Charpy toughness 78.5 J at 0.064% P and increase in 
Phosphorus decreases the Charpy toughness to 70.7 J at 0.24% P. The nickel has the maximum 90 J to 97 J Charpy toughness 
between 6% Ni to 7% Ni. Between 2% Ni to 8% Ni, the charpy toughness is maintain minimum 80 J to maximum 97 J. Morethan 
8% Ni reduces the Charpy toughness to 32 J at 10.8% Ni. The Chromium has a maximum Charpy toughness 77 J to 75 J up to 1% 
Cr. Morethan 1% Cr reduces the value of the  Charpy toughness to 28 J at 8% Cr. The Charpy toughness is constant value of 28 J 
after 8% Cr. Molybdenum increases the Charpy toughness from 75.8 J to 80.8 J at 0.33%. At 0.9% Mo, the Charpy toughness is the 
highest 97 J. Increase more than 0.9% Mo the charpy toughness is reduced to 71.9 J at 1.53% Mo. Vanadium increases the Charpy 
toughness from a minimum 76.5 J to a maximum 87.5 J at 0.16V%. At 0.44% V, the Charpy toughness reduces and at 0.53% V, it is 
27.5 J. Copper increases the Charpy toughness from 77 J to 93 J at 0.62%. Between 0.62% to 1.2% Cu, the Charpy toughness 
decreases from 93 J to 46.5 J. At 2.19% Cu, rhe Charpy toughness is the loweast 42.5 J.  Oxygen increases the Charpy toughness 
from 72 J to 78.3 J at 300 ppm and it reduces to 47 J at 760 ppm. Further increases to 68.2 J at 940ppm Oxygen and then drops to 
54.3 J at 1180ppm Oxygen. Titanium gives a minimum Charpy toughness of 67.5 J to maximum 85 J at 180ppm. At 350ppm Ti, the 
Charpy toughness has a value of 76 J. Between 500 ppm Ti to 550 ppm Ti, the Charpy toughness is 82.5 J. Morethan 550 ppm Ti, 
the Charpy toughness decreases from 82.5 J to 31.5 J at 770ppm Ti. Nitrogen shows a decrease in the Charpy toughness from 76.9 J 
to 62.3 J with an increase in a Nitrogen ppm. Boron gives a little increase in the Charpy toughness from 76.5 J to 77.5 J between 
greater than 0 ppm to 58 ppm. Boron shows maximum Charpy toughness of 88 J at 118 ppm. More than 118 ppm Boron, there is a 
decrease in the Charpy toughness to 40 J at 200 ppm Boron. Niobium has a trend of a decrease in the Charpy toughness from 76.5 J 
to 31.5 J with an increase from a greater than 0 ppm Nb to 1400 ppm Nb. Between 1470 ppm Nb to 1780 ppm Nb, the Charpy 
toughness increases and attains the highest vaule of 100 J. 
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Heat Input has stated that the maximum  Charpy toughness of 113 J at 4.0 kJ mm-1. Between 0.5 kJ mm-1 to 2.5 kJ mm-1, the 
Charpy toughness is a constant 76.5 J. More than 2.8 kJ mm-1 to 4.0 kJ mm-1 Heat Input increases the Charpy toughness from 77.5 
J to 113 J. Higher than 4.0 kJ mm-1 Heat Input, the Charpy toughness reduces from 113 J to minimum 74.9 J at 6.5 kJ mm-1. When 
the Interpass temperature is in range of 20 C to 75 C, the Charpy toughness decreases from 100 J to 73.5 J. Between 80 C to 118 C, 
the Charpy toughness increases from 74 J to 85.9 J and further it reduces to76.8 J at 170 C and constant 76.8 J up to 220 C. 
Morethan 220 C Interpass temperature, the Charpy toughness value increases to 99.9 J at 350 C. Post weld heat treatment 
temperature increases from 50 C to 750 C, shows the Charpy toughness is 82 J up to 125 C then it decreases to 67.2 J between 250 
C to 350 C.Between 350 C to 500 C, the Charpy toughness increases from 67.2 J to 97.2 J. More than 500 C Post weld heat 
treatment temperatute, the  Charpy toughness is almost constant 97.2 J upto 700 C. A Little decrease, from 97.2 J to 96.8 J is 
observed  between 700 C to 750 C Post weld heat treatment temperature. Post weld heat treatment time has a trend of a decrease in 
the Charpy toughness from 79.2 J to 67.2 J at 22 hours. Between 22 to 83 hours, post weld heat treatment time, the Charpy 
toughness is a constant 67.2 J. More than 83 hours, it increases a maximum Charpy toughness to 100 J at 91 hours, Post weld heat 
treatment time and a constant till 100 hours. Testing Temperature of Charpy toughness shows the trend towards of an increase in the 
Charpy toughness from 28 J to 109 J with  an increase in Testing Temperature of Charpy toughness from 80 K to 360 K and then a 
little reduction from 109 J to 106 J between 360 K to 390 K. 
The relationship between  the input variables and the Charpy Toughness is a nonlinear as seen above in response graphs (Figure 3). 
The GRNN model has good accuracy in prediction of Charpy Toughness of ferritic steel welds on unseen data which is excellent for 
the design of welds. (Table.2) The predicted Charpy Toughness of the unseen data of three weld alloys are compared with measured 
values of  Charpy Toughness shows the prediction capacity of the GRNN model. This GRNN model can be used for practical 
applications, research and development of ferritic steel alloys. 

Table 2  Predicted Charpy Toughness by GRNN model for unseen data of three ferritic weld deposits 
Variable Weld alloy 1 Weld alloy 2 Weld alloy 3 

Carbon(wt%) 
0.037 

 
0.033 

 0.03 

Silicon(wt%) 0.3 0.3 0.04 
Manganese(wt%) 0.65 2.17 0.61 

Sulphur(wt%) 0.009 0.008 0.009 
Phosphorus(wt%) 0.011 0.012 0.01 

Nickel(wt%) 3.5 6.54 6.11 
Chromium(wt%) 0.03 0.44 0.16 

Molybdenum(wt%) 0.005 0.62 0.38 
Vanadium(wt%) 0.012 0.021 0.018 

Copper(wt%) 0.03 0.02 0.02 
Oxygen(ppm) 440 320 340 
Titanium(ppm) 55 0.0 0.0 
Nitrogen(ppm) 69 

 139 129 

Boron(ppm) 2.0 1.0 1.0 
Niobium(ppm) 20 10 10 

Heat_input(kJ.mm-1) 1.0 1.3 1.3 
Interpass_temperature(C) 200 200 200 

Postweld_heat_treatment_temperature(C) 580 0.0 0.0 
Post-weld_heat_treatment_time(h) 2.0 0.0 0.0 

Testing Temperature CT (K) 210 293 293 
Measured CT (J) 100 41.5 123 
Predicted CT (J) 100 39 113.5 
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IV. CONCLUSIONS 
The General Regression Neural Network is the best for capturing trends of input variables and output variables in weld alloys which 
are nonlinear. A neural network method based within a General regression neural network has been used to rationalize an enormous 
quantity of published experimental data on the Charpy Toughness. It is now possible, therefore, to estimate the Charpy Toughness 
as a function of the chemical composition, welding conditions and a variety of heat treatment parameters. 
The model formulated has been applied towards the understanding of ferritic steel alloys used in welding for various equipment 
construction in industries (eg. Power plants, Submarines, Liquid Gas Storage Tanks..etc.) It has been used successfully on unseen 
data on ferritic steel welds for various applications. 
The design of the ferritic  weld alloys become easier, accurate, economical and time-saving with the help of the GRNN modelling. 
The control of the effective input variables gives the desired Charpy Toughness of weld alloys for real applications in industries. 
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