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Abstract: Basic properties of Dirac Delta Function are explored. Inter-relationships among various representations are 
established. Fourier Integral is achieved from this improper function. The value of Fermi Golden Integral emerge out in a 
simple manner. 
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I. INTRODUCTION 
Dirac delta function has its root in quantum mechanics as a fundamental tool to normalize a plane wave solution. In case of discrete 
spectrum Kronecker delta is sufficient to ensure the orthonormality and completeness, but for the regime of continuous domain 
necessity of Dirac delta function comes in to the play. Now we start with defining Kronecker delta function [1] 
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It has a simple property as reflecting the completeness of the spectrum of Eigen values 
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This simple property can be used to transform the argument of any function as given below 
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The Eq. (1) appears in case of Dot Product of vectors, partial differentiation of independent coordinates, integration of trigonometric 
functions, integration of exponential function with imaginary argument etc.  Thus we can write obtain an integral representation of 
Kronecker delta as follows [2] 
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The transition from discrete to continuous domain can be accomplished with the substitutionݔ = ଶగ


ܮ, → ∞. It is worthwhile to 
mention that n takes values in unit steps but x is continuous due to L.  

Now we introduce Dirac delta function in the following manner 

(ݔ)ߜ = lim∆௫→
ఋ,బ
∆௫

         …(5) 

This definition suggest the constraint that 

(ݔ)ߜ ݔ݀∫ = ∑ lim∆௫→
ఋ,బ
∆௫

ݔ∆ = ,ߜ∑ = 1     …(6) 
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The definition given by Eq. (5) reveals that Dirac delta function is not a proper function in the vicinity of origin and vanishes away 
from it. But the constraint Eq. (6) controls its improperness up to some extent and makes it as a pathological function [3].  

(ݔ)ߜ = ቄ∞,
0,
ݔ = 0
ݔ ≠ 0          …(7) 

Eq. (7) gives the improper character and to control the behavior up to some extent, we may say that Dirac delta should satisfy the 
following property 

(ݔ)ߜݔ = ߜ   ,0 ᇱ(ݔ) =  (8)…      ,ݔ/(ݔ)ߜ−

Above Eq. (8) shows that the slope of it is infinite at the origin due to improper character of the function. Moreover, Eq. (7) reveals 
that Dirac delta function is an even function while Eq. (8) says its derivative is an odd function.  
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The nth derivative is found to be 
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Eq. (11) suggests that fractional derivative of Dirac delta function lies in imaginary regime. 

Eq. (8) also shows the change of scale property 

ݔ) − ݔ)ߜ(ܽ − ܽ) = 0,     axaaxx      …(12) 

Eq. (12) suggests that Dirac delta function focuses the function at the origin or point of vanishing argument [4]. 

       axafaxxf           …(13) 

II. VARIOUS REPRESENTATIONS OF DIRAC DELTA FUNCTION AND INTERRELATIONSHIP- 

A.  Plane wave representation 
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B. Sinc(x) representation 
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C. Lorentzian Representation 
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D. Gaussian Representation 
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Here it should be emphasized that the value of (½) emerged out by itself. 

E. Derivative of Lorentz Heaviside step Function 
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F. Dirac Delta Decomposition 
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Where P stands for Cauchy ‘s Principal value of the integral. Eq. (23) is known as Dirac identity. 
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Eq. (24) is direct manifestation of Eq. (22) and Eq.(23). Eq. (24) can be utilized to obtain further expression of Dirac Delta 
Function. 
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real and imaginary parts , we get 
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In obtaining Eq. (26) we noticed that   1g  
Eq. (26) can be further molded to get other representation as follows 
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G. Hyperbolic Secant Representation 

Dirac Delta function is an improper function and we can develop a proper function which in limiting case produces Dirac delta 

function. 
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Therefore, we may take squared hyperbolic secant representation in the following manner. 
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Eq. (16) , (17) and (29) are used to represent a line shape function of a Laser pulse. 

III. EVALUATION OF VARIOUS INTEGRALS 
A.   Integral of Sinc (x)  
Eq. (25) and Constraint Eq. (6) suggest that 
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B. Fermi-Golden  Integral 
Eq. (26) and Constraint Eq. (6) suggest that 
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This integral is what we exactly need in time dependent perturbation theory in quantum mechanics. 

C. Fourier Integral and Fourier Transforms 

Eq. (3) in case of continuous distribution acquires the form given below. 
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        … (32) 

Using Plane wave representation for Dirac Delta function, we have 
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Eq. (33) is well- known Fourier Integral. 
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These are usual Fourier transforms. 
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IV. MOST COMMON PROPERTIES 
This section is included due to different methods to evaluate some properties of Dirac Delta function. 

A.  Delta Orthogonality 
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B.  Delta Projection at Roots of the Argument 
We define an auxiliary function  in the following way 
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If function is f(x)  as a polynomial of degree n. 
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V. CONCLUSION 
Dirac Delta function is widely studied by a number of scholars, but in this paper its usage to find value of (½), to define Fourier 
Transforms and to evaluate various types of integrals is highlighted. The basic finding is we have to investigate proper function 
(x)which in limiting case produces improper function (x), then the constraint condition will allow us to evaluate a difficult 
integral. This makes Dirac Delta function a very powerful tool in Mathematical and theoretical Physics. 
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