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Fundamental Study of Dirac Delta Function
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Abstract: Basic properties of Dirac Delta Function are explored. Inter-relationships among various representations are
established. Fourier Integral is achieved from this improper function. The value of Fermi Golden Integral emerge out in a
simple manner.
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L. INTRODUCTION
Dirac delta function has its root in quantum mechanics as a fundamental tool to normalize a plane wave solution. In case of discrete
spectrum Kronecker delta is sufficient to ensure the orthonormality and completeness, but for the regime of continuous domain
necessity of Dirac delta function comes in to the play. Now we start with defining Kronecker delta function [1]

s b Q=]
ij — 0 i;tj ..(1)

It has a simple property as reflecting the completeness of the spectrum of Eigen values

Zgij =1 : Vl,] S {0,1,2,} ..(2)

i=—00
This simple property can be used to transform the argument of any function as given below
i=o0
Z5ijf(l)= f(J) ..(3)
i=—o0

The Eq. (1) appears in case of Dot Product of vectors, partial differentiation of independent coordinates, integration of trigonometric
functions, integration of exponential function with imaginary argument etc. Thus we can write obtain an integral representation of
Kronecker delta as follows [2]

1, n=0

[Linoyn B 4 Tai(p-a)e
& [e"do = 0 10 = 5,0 8,4 =% [e"d6 @

The transition from discrete to continuous domain can be accomplished with the substitutionx = ?,L — oo. It is worthwhile to
mention that n takes values in unit steps but x is continuous due to L.

Now we introduce Dirac delta function in the following manner

. 5n
§(x) = limy, o222 ...(5)

This definition suggest the constraint that

[ dx 8(x) = Zlimy, o 22 Ax = 6,0 = 1 ...(6)
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The definition given by Eq. (5) reveals that Dirac delta function is not a proper function in the vicinity of origin and vanishes away
from it. But the constraint Eq. (6) controls its improperness up to some extent and makes it as a pathological function [3].

vx=0
0,x#0

s ={¢ (7

Eq. (7) gives the improper character and to control the behavior up to some extent, we may say that Dirac delta should satisfy the
following property

x6(x) =0, 6'(x) =—-6(x)/x, ...(8)

Above Eqg. (8) shows that the slope of it is infinite at the origin due to improper character of the function. Moreover, Eq. (7) reveals
that Dirac delta function is an even function while Eq. (8) says its derivative is an odd function.

'fé’(x)dx =0 .(9)

[ #(x)67(0)ax = F (5] = [ £(x)5(x)ex =—1(0) o)

The n" derivative is found to be
n
— |
(n) _ ( 1) n. _ ( -1 )n
5 (x)_T5(x)— —x*)T(n+1)5(x) ..(11)
Eq. (11) suggests that fractional derivative of Dirac delta function lies in imaginary regime.

Eqg. (8) also shows the change of scale property

(6 — @)5(x —a) = 0, x5(x—a)=as(x—a) .(12)

Eqg. (12) suggests that Dirac delta function focuses the function at the origin or point of vanishing argument [4].
f(x)s(x—a)= f(a)s(x-a) 0

1. VARIOUS REPRESENTATIONS OF DIRAC DELTA FUNCTION AND INTERRELATIONSHIP-

A. Plane wave representation

T

: : fj.e'”"’ @ :
Lim 6,, Lim 27° Lim 1 7% (2mY L L
5(x)= 0 S S — lexp|il =— | —o¢ |[d| —¢
AX—>0Ax Loow 27/L L—>ow27 7 L A2z 27
L/2

Iexp i(x)k)M :—Iexp (ikx)dk

L2

L —> 27T
..(14).
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B. Sinc(x) representation

Lim 1 % Lim 1
5(x)= R ooﬂ_L/pr(l(X)(k))j(k)_ 0> 028 de exp(ikx)
Lim sin gx ..(15)

g—>o 72X

C. Lorentzian Representation

1 % . Lim 1 % oK
o(x)=— |explikx)dk = — dk
) 271_[0 Plikx) e>0+27 -[
Lim Lim 1 % :
5(x)—€_>0+27[ ~|‘exp |kx+ek)dk+€_>0+goexp(lkx—ek)dk
_Liml{l_l}_Lim €
e 0+27 |x—-ie x+ie _e—>0+7ziX2+ezi
..(16)
D. Gaussian Representation
5(x)=LTexp(ikx)dk_ Linz) » J'exp{lkx—(%)z}dk
L bl
e—> 0+ 2 i e 2 ie
_ Lim eXp|—(X/e I.[exp 5 }if Lim exp—(x/e)zI
e—> 0+ e—> 0+ en
jé(x)dx—l:slj%[(xi] [ ) jexp[ g2he=1= 1=z
s9-_tm e l0er]
e—> 0+ c \/;
..(17)

Here it should be emphasized that the value of T"(*2) emerged out by itself.

E. Derivative of Lorentz Heaviside step Function

J.g(x)jX:J. le Ze _ X = le E 4dx
-~ e>0+7x+€ e>0+7 - X+ e’

1 Lim 1 X
==+ —arctan —
2 e->0+n7 IS
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X 1, x>0 +sign(x 1, x>0
S|gn(x):¥:{_l’ x<0 H(X):l 3 ( ):{0, x<0
IX| = sign(x) x = %|x| =sign(x)  O(+x)= HS'Tgn(X) , sign(x) = 0(x)—0(- x)

e—>0+7 IS e—>0+7 IS

J'5(x)jx=%+ Him larctan{M}=%+sign(x) Lim larctan{ﬁ}

=24 sign(x)larctan{ Ll } _Lesiont) )

T 0+ 2
_do(x)
5(x)= ” ..(18)
4 1+sign<x>}_11 o= 29I _ 1
ox)= dx{ 2 ~ 2.dx sign(x) = 2dx dx  2dx’ {=3(-x) 19
5(ax):1 h lax| = L d |ax|:i5(x) ..(20)
2 d(ax)’ 2Ja|" dx® El

F. Dirac Delta Decomposition

5( Lim 1{ 1 1} 1 Lim 1 1 Lim 1
X

2mie—>0+x—ie 2nMe—>0+x+ie

e— 0+ 2 —le X+ie
:5(x)+5+(x):5+(x)+m:zRe5+(x):2im€:"g+[5(x)_5+(x)]

+X_1 Lim -1 -1 Lim
21e>0+ e—ix 2me—0+

O

Tdk exp[— k(e —ix)]

-1 i ..(21)
- _ = k k ikx

27r_£d (ke
s 1 Lim 1 1 Lim ¢ _
6 (X)=-— =— dk exp|— k(e +ix

) 2r €= 0+ e +ix 27te—>0+'([ pl-k(e+ix)]

Lk e fk o i - (22
:_1 dk e™ Zijdk pikx :ij'dk 9(—k) aikx (22)

27 % 21 =, 2 °

+ 1 XFi0 X . 0 1 _.

* = — — — P—
") X£i0 X2 +0° X407 x2+0° X+m5(X) (23)
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Where P stands for Cauchy ‘s Principal value of the integral. Eq. (23) is known as Dirac identity.

. 15 .
5’(X)=; [ dk 6 K )exp(ikx) .(24)

Eqg. (24) is direct manifestation of Eq. (22) and Eq.(23). Eqg. (24) can be utilized to obtain further expression of Dirac Delta
Function.

Lim 1%
o' (X)= == dk9 ex |kx dk ex |kx
() e—>0x+|e |I p ) |g—>ooj p )
Lim x . Lim_« Lim 1-e®  Lim 1-cosgx . Lim singx Eauating
= —_—— — = = - -
es>0x’+e? e>0x’+e? goo X g X g—o>o X
real and imaginary parts , we get
Lim Lim sin gx Lim sin gx
2e 2\~ : :5()(): :
e—>0x(x+e€ g—>o ax g—oo X ...(25)
Lim  x Lim 1-cos gx Lim 1-cosgx
- —TEROE = 5(x)= —=F
e—>0Xx"+¢ g—> o X g o agX ...(26)
In obtaining Eq. (26) we noticed that 9= }é

Eqg. (26) can be further molded to get other representation as follows
5(x) = Lim 1-cosgx  Lim 1-cos2gx  Lim sin®gx

g g’ g 29¢ g gk’ e

G. Hyperbolic Secant Representation
Dirac Delta function is an improper function and we can develop a proper function which in limiting case produces Dirac delta
function.
Lim
A_(X)=05(x _[ dxA_(x)=1
oA )=6(x) (x)
Lim |_ 2 |
5(x) = exp|-(x/¢)
e—>0+ e \/;
exp{— (x/€)’ }z 1-(x/e)?
cosh(x/e)~1+1(x/e)’

sech?(x/e)~ [1+%(x/e)2 Tz =1-(x/e)’ = exp{— (X/E)z}

Hence, we choose

AL(x)= 5 h;ix/e)

[ SeCh X/e jd( Jse h( J_%tanh(gw

—00

=1
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Therefore, we may take squared hyperbolic secant representation in the following manner.
Lim sech?(x/e Lim Lim 2
5(x) = (x/e) _ g g/

e>0 2e g > ol+cosh2gx g —> oo (L+ cosh gx) ++(28)
exp{—(x/e)z}zl—(x/e)2
sech(x/e)~1-1(x/e)’
sech(ﬁx/e) [1——(\/_x/e)} ~(x/e)’ ~exp{—(x/e)2}

5(x)= Lim 2 sech(ﬁx]

...(29
e>0re € @)
Eq. (16), (17) and (29) are used to represent a line shape function of a Laser pulse.
1. EVALUATION OF VARIOUS INTEGRALS
A. Integral of Sinc (x)
Eqg. (25) and Constraint Eq. (6) suggest that
Lim % singx Lim % singx Tosiny &

Idx SN Idgx g :n:jdy—y:—
g—>o© g —>x©7, gx 0 y 2 ...(30)
B. Fermi-Golden Integral
Eqg. (26) and Constraint Eq. (6) suggest that

Lim % sin® gx Lim % sin®(gx sin’

[ax" P =1 [d(g) =T 99 _4 jd A
g0 agX gz a(gx) y* @)
This integral is what we exactly need in time dependent perturbation theory in quantum mechanics.

C. Fourier Integral and Fourier Transforms
Eqg. (3) in case of continuous distribution acquires the form given below.
Idx f(x)s(x—x)= f(x)
.. (32
Using Plane wave representation for Dirac Delta function, we have
L1 I dk I dx f(x)exp [ik (x — x")]= f(x')
2 2, ..(33)

Eq. (33) is well- known Fourier Integral.

%T dk exp [- ikX’]{%T dx f(x)exp [ikx ]} = 1)

T o o L] FLOGOIK= 1) .(34)
F[f(x)|k]:%idx exp [ikx ] f(x)

These are usual Fourier transforms.
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V. MOST COMMON PROPERTIES
This section is included due to different methods to evaluate some properties of Dirac Delta function.

A. Delta Orthogonality

f(x)s(x—a)= f(a)s(x—a)

= 5(a—-x)f(x)= f(a)s(a—x)= d(a—x)5(x—b)=5(a-b)s(a-x)

de&(a—x)&(x—b):é(a—b) o
B. Delta Projection at Roots of the Argument

We define an auxiliary function y in the following way

W=7 70 @)=, axo 8
2(x)5(x)=5(x) @)

If function is f(x) as a polynomial of degree n.

()= (c- sz a, J{(x-a,)f,(x)} ,

i=1

-6, fla)=5,f@) . x(f)=x(x-a)

i=1 i=1

§(1)= 2(1)5()=> x(x-a, p(f) sz 2, )5 H( a,)

i=1

Z (x—a pl(x—a,)f;(x)]= Z6[x a)f.(a)]= Z “ )‘) .n j(x_éi) ..(38)

V. CONCLUSION
Dirac Delta function is widely studied by a number of scholars, but in this paper its usage to find value of I'(*2), to define Fourier
Transforms and to evaluate various types of integrals is highlighted. The basic finding is we have to investigate proper function
A(X)which in limiting case produces improper function 3(x), then the constraint condition will allow us to evaluate a difficult
integral. This makes Dirac Delta function a very powerful tool in Mathematical and theoretical Physics.

REFERENCES
[1] J D Jackson, Classical Electrodynamics, John Wiley NY 2007
[2] F Reif, Fundamentals of statistical and thermal Physics, Mc Graw- Hill NY 1965
[3] A. Messiah, Quantum Mechanics vol.1, Dover Publications, NY 1999
[4] Mikhail G. Katz & David Tall, arXiv: 1206. 0119v2 [Math.HO] 5 Sep 2012

©IJRASET: All Rights are Reserved

924



d lIsRA

ef n\m
cross’ COPERNICUS

10.22214/1JRASET 45,98 IMPACT FACTOR: IMPACT FACTOR:
7.129 7.429

INTERNATIONAL JOURNAL
FOR RESEARCH

IN APPLIED SCIENCE & ENGINEERING TECHNOLOGY

Call : 08813907089 (V) (24*7 Support on Whatsapp)




