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Abstract: This paper presents the simulation of the classical PD control technique for implementation of Line Follower Robot 
followed by integration of the maze-solving algorithm with insights of differential drive mechanism performed on MATLAB 
software. The system incorporates parameters of real components such as motors and sensors to replicate the fundamental 
characteristics of the robot.  To carry out experimentation at low cost as well as at low risk, it is possible to develop a virtual 
system along with the exact environment surrounding it. Simulation is the key to determine the underlying mechanisms that 
control the behaviour of the system without actually implementing it in the real world. 
Keywords: Motion and Path Planning, Sensor Based control, Differential Drive, Simulation Systems, Wheeled Robots. 

I. INTRODUCTION 
A Line Following Maze-solver Robot is an autonomous system that follows either black or white line with a highly contrasting 
background drawn on the plane surface. Simulation is carried out to avoid manufacturing cost of the proposed system and 
construction of the environment required for testing phase of the system and also to eliminate the risk involving damage to the 
actual resources. The entire process is performed on MATLAB platform as it offers the visualization and methodical analysis of the 
respective system under the various practical scenarios and thus provides modulation of the parameters affecting the performance of 
the same. The Line Following Maze-solver robot incorporated with reflectance sensors must be capable of following the path (white 
line in this case) and along with that, it must keep the track of the intersections or immediate variation in angle along its path. The 
motion of the robot is implemented using PD (Proportional-Derivative) control technique. This paper is divided into sections 
elaborating below three phases of simulation: 
1) Creating the Environment:  In order to receive accurate results from the simulation, it is necessary to create a real-world 

scenario virtually which includes the physical properties of both the system and its surrounding environment to test the 
behaviour of the system. 

2) Dry Run: It refers to the traversal of the robot throughout the maze until the end point is encountered. This phase stores the 
path-tracking information in its volatile memory to fulfil the requirements for the next phase. 

3) Actual Run: The final phase evaluates the path-tracking information in order to determine the possible shortest path.  
The parameters are received from the simulation which are based on the valid sources of information, relevant selections of 
characteristics and assumptions within the simulation. 

II. PRELIMINARIES 
A. Creating the Environment 
Prerequisite for performing any kind of simulation is to create a replica of the environment surrounding the system. For creating a 
line maze, a binary occupancy map is generated through the Simulation Map Generator, which is preinstalled in MATLAB. Initially, 
a 2D map is designed in any CAD software such as Solidworks, AutoCAD etc. It is necessary to consider desired dimensions viz. 
width of line, angle of intersection since these factors influence the performance of the system/simulation. The resulting map is then 
converted into an image with resolution 1000 pixels per meter.  
The image is imported into the Simulation Map Generator and dimensions (in meters) of the maze must be specified manually. Map 
option is selected as Line Following. It provides an image threshold option to increase accuracy in binary occupancy map by 
minimizing the noise in the image. The generated map is exported with ‘.mat’ extension and the same file is imported in MATLAB 
workspace for further simulation. After importing, MATLAB automatically creates a variable named MapForSim. This variable 
serves as the entire maze map.   
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Fig. 1 Binary Occupancy Maze Map generation in Simulation Map Generator. 

 
B. Configuration of Line Sensor Block 
The proposed robot system is incorporated with a Reflectance Line Sensor Array to distinguish between Line and background 
Environment. To simulate the line following task, a Line Sensor Block that serves as a reflectance sensor which is available in 
Mobile Robotics Training Library within MATLAB is used. The block outputs viz. Environment values as well as Line values of 
the binary map are based on whether the sensor is on top of the Environment or the Line. It is necessary to customize the 
characteristics of the available Line Sensor Block according to the sensor, which will be used in real world implementation. 

 
Fig. 2 Specification of sensor array characteristics to            Fig. 3. Position of individual sensors in sensor array with respect 

Replicate the behaviour in the virtual environment.                  to center of  wheel rotation axis. 
                                    
In Block Parameters window, the sensor characteristics that are needed to be specified are as follows: 
1) Map Variable: The variable which is automatically created after importing the ‘.mat’ file of the line maze. This variable reflects 

the maze characteristics through the map created in Simulation Map Generator.   
2) Environment Value: The minimum value which we have to specify such that individual sensors give the same value when they 

occur over the background surface.  
3) Line Value: The maximum value which we have to specify such that individual sensors give the same value when they occur 

over the line surface. 
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4) Sensor Offset in meters: Array of [x1 y1; x2 y2;….;xn yn] values that represents the offset position of the line sensors from the 
center of wheel axis. Each coordinate in the array corresponds to an individual line sensor in the array. Fig. 3 explains the 
coordinates of individual sensors with respect to center of the axis of the wheel. The red circles represent each individual 
sensor. Since, each sensor is collinear and parallel to the wheel axis, the x-coordinate is identical and y-coordinate differs by the 
corresponding offset. 

Due to difference in contrast at various spots in environment as well as variation in ground clearance of the sensors, they may give 
intermediate values between 0 and 1000. Hence, we apply average threshold value as a filter to distinguish the readings.  
 
C. Weighted Average Error 
Line sensor provides six readings corresponding to each individual sensor. These readings have to be evaluated into one error value. 
Hence, each sensor is assigned with a weight according to its position in sensor array to get the weighted sum.  
We have assigned the left position to the sensor located at coordinates [x1, y1] as shown in Fig. 3. This weighted sum is averaged by 
the summation of readings of the active sensors. In the case where line sensor is entirely over environment, then 2.5 value is 
considered as default weighted average irrespective of the sensor readings to avoid divide-by-zero exception. This causes the range 
of the weighted average values to reside between 0 and 5. 
 

Weighted Sum = 
∑  ௌ௦[]∗ఱ
సబ

 ∑ ௌ௦[]ఱ
సబ 

  (1)           

 
Error =   2.5−Weighted Sum  (2)           
 
The final error value is evaluated by subtracting the weighted average from 2.5 as the error must be zero when only centric sensors 
are activated i.e. above the black line. The negative error indicates that the motion of the robot tends to greater on the right direction 
and vice versa.  
 

 
Fig. 4 Implementation of weighted average error in Simulink MATLAB. 

 
The above figure shows the Simulink implementation of aforementioned formulae. The triangular GAIN blocks represent the 
weights assigned to individual sensors followed by the Summation block. This is equivalent to numerator of (1). Sensor readings are 
bypassed and then added which is equivalent to the denominator of (2). Switch blocks are used to avoid exceptions and then error is 
calculated from the SUBTRACT block. This error is given to PD control block. Here, each mentioned primary block is inbuilt in 
Simulink 
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III. PD CONTROL SYSTEM 
A. Configuration of PID block 
In the line following application, a closed loop controller is used to achieve steady motion. A closed loop controller is a system 
which constantly provides the feedback about its response to the readings provided by the sensors. This feedback helps the system to 
keep the error value as close as possible to zero thus improving the stability of the robot. PD controller is the most commonly used 
controller for such purposes. The reason behind choosing a PD controller is that the proportional gain causes the robot system to 
respond quickly to minimize the error while derivative gain prevents overshooting of the robot system resulting from the quick 
response due to proportional gain, thus maintaining the transient stability throughout its traversal.  
Given the weighted average error e(t) at instance t, the mathematical formula for calculating PD output is given by: 
 

ݐݑݐݑ ܦܲ           = ܲ. (ݐ)݁ .ܦ+ ௗ
ௗ௧
 (3)      (ݐ)݁

 
In MATLAB, there exists a PID block inside Simulink. The only input required to the block is the weighted error value evaluated 
from the method mentioned in the one of the previous sections and its output is angular velocity (ω) which is then supplied to the 
Robot Simulator block. As with every other block, the PID block also needs to be configured. Here, we are using PD control in a 
discrete time domain since the respective Robot Simulator block is compatible with discrete time domain 
 

 
Fig. 5 Configuration of PID block as it can be used as PD control block by specifying required parameters. 

 
The few parameters, which are necessary to be specified as mentioned in Fig. 5, are as follows: 
 
1) Controller Type: Among the various types of control systems, PD controller is implemented for this application. We cannot use 

PID controller since it slows down the system response 
2) Proportional Gain (P): This term, after multiplying with error adjusts the proportional response.  It is primary factor of PD 

control system. Generally, P term is set before the other gain constants.  
3) Derivative Gain (D): This term slows down the controller output resulting in the minimization of overshooting of the robot. The 

D term is evaluated according to the resulting response due to P term. 
 
The MATLAB also provides the option for automatic tuning where it takes input as required response curve and then adjusts the 
gain constants such that it fits the input curve.  In some cases, it may not provide the required output, hence we need to further tune 
it. 
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B. Calibration of Gain Constants 
Response time of the robot depends on the architecture of the same. Hence, to achieve transient motion, the gain constants need to 
be tuned by observing the robot's behavior for various parameters. To reach utmost stability, multiple values need to be tried out. 
Initially, the P gain constant is set followed by the D gain constant. 
P-gain: The proportional gain must be set such that the robot starts to recognize the existence of line. If P-gain has small value, then 
robot will not follow the line. However, high value of P-gain will result in undamped oscillations with high amplitude. In practice, 
the P-gain value should be initialized with 0 and updated with small increments till the robot starts to follow the line even though it 
shows a minute oscillatory motion.   
D-gain: After adjusting the P-gain, the resulting oscillations can be dampened by the appropriate value of D-gain. Similar to P-gain, 
this value should be initialized with 0 and updated with even small increments till the oscillations completely disappear. The gain 
parameters must be positive real values and can be obtained by trial-and-error method. There is no need to change the remaining 
default parameters in the block parameter window as in Fig. 5. 

 
Fig. 6 The discrete signal indicating the response of PD control in terms of average weighted error with respect to time (P=2, D=1e-

4). 

IV. MAZE TRAVERSAL ALGORITHM 
A line maze is made of a black or white line with a highly contrasting background. The line stretches across the given maze 
dimensions forming the maze. It forms various turns, intersections and dead ends between the start and the end. The types of 
intersections or turns are as shown in the Fig. 7. The Line Following Robot will first scan the maze in the dry run, and apply the 
shortest path algorithm to eliminate all redundant traversals in order to achieve the shortest path. The robot may encounter many 
dead ends in its first run as the robot typicallycannot traverse the maze without taking a number of wrong turns. This in turn helps it 
to solve for the shortest route in the next run. 

 
Fig. 7 Possible conditions a robot can encounter while traversing the maze. 
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The eight cases when encountered need to be sorted into categories- turns and intersections. The actions taken by the robot with 
respect to the corresponding situation are as follows:  
1) In the first two cases of Left Turn Only and Right Turn Only, the line path is extended in that direction. The robot has no choice 

except to follow the marked path. These turns need not be stored in memory for the shortest path calculation.  
2) In the case of a Dead End, the robot has to make a 180-degree rotation. The dead-end signifies that the robot has made a wrong 

move. Hence, this case should be stored in memory for the shortest path calculation.   
3) In the case of Straight or Right Turn and Straight or Left Turn, the robot needs to check if it is a dead-end. To do this the robot 

moves a short distance forward to check if the path continues or not. If it is a dead-end then it is stored in memory for shortest 
path calculation else, the robot continues to trace the path.  

4) In the case of T junction and Cross Way, the robot should move a small distance forward after making a turn to check for dead-
end. This turn should be stored in memory irrespective of its result.  

 
In order to determine the shortest path to solve the maze, robot needs to traverse the maze twice. 
a) Dry Run: The robot finds a way to the end of the maze via an imperfect route having multiple dead-ends and unnecessary turns. 

Decisions at some intersections are recorded in memory. This data is then used to determine the shortest path. 
b) Actual Run: Once the robot traverses the dry run, the shortest path is determined. The robot then follows this path, with no 

dead-ends, from start to the end. The robot needs to be manually placed at the starting position in shortest path run. 
The approach implemented to solve the maze is Left Hand Rule which prioritizes left turn over right turn or going straight. There is 
a possibility that robot will traverse the shortest path in the dry run. In that case, there will be no alteration made in the path during 
shortest path run. The line sensor can detect five cases in a maze. Table I indicates the value assigned to the five possible 
combinations of the sensor. A MATLAB function is developed that assigns value to these five cases.  

 
Table I                                                                                                  Table II 

Assigned values to the states of the six sensor array               Transition in the assigned value according to the 
change in the states of the six sensor array. 

 
 

 
 
 

 
 

 
 
 
 
 
 
 
 
 
Here, for the simplicity the sensor values are denoted as either 0 or 1 instead of 0 and 1000 respectively. 
 [݅]݁ݑ݈ܸܽ ݎݏ݊݁ܵ

= ൜1, .݈݁݊݅ ݁ݐℎ݅ݓ ℎ݁ݐ ݊ ݏ݅ [݅]ݎݏ݊݁ݏ 
0,    (4)                   .ݐ݊݁݉݊ݎ݅ݒ݊݁ ݈ܾ݇ܿܽ ℎ݁ݐ ݊ ݏ݅[݅]ݎݏ݊݁ݏ 

Where 1 ≤  i  ≤ 6 since array includes six individual sensors. At each intersection or turn, the robot intends to move further by a 
small distance to check the availability of additional path. If it exists, the robot continues to follow that particular additional path and 
make transitions accordingly. The transitions of the robot are explained in Table II below where the Line Value is taken from the 
Table I. 

Case Sensor at 
time t 

Sensor at 
time ܜ +  ܜ∆

Value 
Transitio
n 

Left Only 1-1-1-1-0-0 0-0-0-0-0-0 2 → 5 
Right Only 0-0-1-1-1-1 0-0-0-0-0-0 3 → 5 
T intersection 1-1-1-1-1-1 0-0-0-0-0-0 4 → 5 
Cross 
Intersection 

1-1-1-1-1-1 0-0-1-1-0-0 4 → 1 

Straight / Left 1-1-1-1-0-0 0-0-1-1-0-0 2 → 1 
Straight / 
Right 

0-0-1-1-1-1 0-0-1-1-0-0 3 → 1 

Dead End 0-0-0-0-0-0 0-0-0-0-0-0 5 → 5 
End of Maze 1-1-1-1-1-1 1-1-1-1-1-1 4 → 4 

Line Sensor Value Assigned value 
(Integer) 

    On Centre 0-0-1-1-0-0 1 
    On Left 1-1-1-1-0-0 2 
    On Right 0-0-1-1-1-1 3 
    Intersection 1-1-1-1-1-1 4 
    Dead end 0-0-0-0-0-0 5 
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V. SHORTEST PATH ALGORITHM 
The path array obtained from the dry run is used to determine the shortest path. This path array contains the path chosen at each 
intersection. To obtain the shortest path from the start of the maze to the end, all the dead ends must be replaced by an alternate path. 
To achieve this, whenever an x4x path sequence is encountered, the equivalent shortest path replaces it. The values of x can be 1, 2, 
3 or 4. The x4x sequences are replaced by x00 sequence obtained by the following patterns: 
 

Table III 
The redundant sequences in path array with respective alternate values 

Sub-sequences Alternate value 
[2,4,3] or [3,4,2] [1,0,0] 
[3,4,1] or [1,4,3] [2,0,0] 
[1,4,1] [3,0,0] 
[2,4,1] or [1,4,2] or 
[3,4,3] 

[4,0,0] 

1- Left turn  2- Right turn  3- Straight  4- Dead-end 
 

After the sequences are replaced according to the respective pattern, the zeroes are shifted to the tail of the array. This loop 
continues until all the 4s in the path array are replaced if any. Considering the successful implementation of dry run on the 
mentioned maze in earlier sections, it gives the following path. 
PathArray =   
[ 1 1 4 1 3 3 1 1 1 3 4 1 ] →Path array received from dry run  
[ 1 3 0 0 3 3 1 1 1 3 4 1 ]                                                                     
[ 1 3 0 0 3 3 1 1 1 2 0 0 ]            
[ 1 3 3 3 1 1 1 2 0 0 0 0 ] →Final Shortest path 
The number of non-zero elements in the shortest path array indicates the exact number of intersections that the robot will encounter 
where it has to make a decision.  

VI. STATEFLOW IMPLEMENTATION 
Stateflow is a graphical language which is used to describe the way MATLAB algorithms and Simulink models react to input 
signals, events, and time-based conditions. With Stateflow, users can model combinatorial and sequential decision logic that can be 
simulated as a block within a Simulink model or executed as an object in MATLAB. Graphical animation enables to analyze and 
debug logic while it is executing. The Stateflow involves the entire algorithm from receiving the sensor inputs to determining the 
shortest path within a block which acts as a centralized system. It includes two fundamental blocks for dry run and shortest path run 
where only one can be activated at a time. Depending on the mode of operation, the inputs are given to the block. 

A. Inputs to the Stateflow  
1) LF, LM, LC, RC, RM, RF:  As line sensor may give intermediate values between 0 and 1000. The readings from six individual 

sensors are applied to a threshold using threshold block and then supplied to the Stateflow. 
2) velocity: For controlling the linear motion, it is required to provide a linear velocity threshold to the motor model block. Robot 

will be unable to exceed this velocity. 
3) line_pos: A MATLAB function which evaluates line_pos value according to the line sensor readings. This value is used by the 

robot to know the path ahead. 
4) delay distance: The time period in seconds in which the robot intends to move further in order to check the possibility of 

additional path.  
5) delay_turn:  In this time period, the robot ignores the line sensor reading to ignore the straight line provided the existence of the 

path to the left. 
6) mode: This switches the functionality of the robot from dry run to shortest path run. Dry run can be used to find new paths in 

the same maze while shortest path eliminates the dead-end along that path 
7) Solved path: After completing the dry run, shortest path array needs to be provided to the robot which is received from 

solvedpath() function.   
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B. Outputs from the Stateflow 
Depending on the position of the robot, Stateflow gives following outputs which control the traversal of the robot. 
1) Velocity: It is an intermediate value between 0 and the linear velocity threshold which is provided as input. 
2) Angular velocity: It is the angular velocity corresponding to each motor of the robot. This velocity will be further converted into 

corresponding voltages in the motor model. This velocity also plays a role in ensuring steady movement of the robot. 
3) Path:  It provides simultaneous state of the path array to observe at the time of dry run. The array is updated as the robot passes 

each junction in the maze. 
4) Maze: It is in the format of array which is the final state of path output. The same array is then passed to solvedpath() function. 
There are two parameters which need to be regulated according to the desired linear velocity:    
a) delay_distance: Distance delay to travel a short distance after intercepting a line value. 
b) delay_turn: Sensor Delay while turning from cross, straight or left, straight or right cases to avoid transition to straight line       

directly. 

C. Dry Run Stateflow 
The stateflow includes Action states such as Follow line, Go left, Go right, U turn and Stop. During each Action state, linear 
velocity (v) and angular velocity (ω) are given as output. The intermediate states are check left or straight, check right or  
 straight, check intersection or maze end. The intersections are again checked for cross or T intersection. Whenever the robot 
encounters a junction, the counter is incremented and the path is stored in an array. The follow line state has a Simulink function 
which calculates required angular velocity of robot using PD controller to follow straight line. Transition to intermediate state 
occurs when condition for particular state is true. Each time the transition occurs the linear velocity (v) and angular velocity (ω) are 
set to zero. 

 
Fig. 8. Visual representation of Maze Traversal Algorithm in the 

form of  the time of encountering a left path possibility.                    
Fig. 9. Stateflow implementation representing algorithmic 

approach at the  time of encountering a right path possibility. 
 

  
Fig. 10 Stateflow implementation representing algorithmic approach at the time of encountering a dead-end possibility.       Fig. 11 

Stateflow implementation representing algorithmic approach at the time of encountering an intersection path possibility. 
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When a state transition occurs from Follow Line to check left or straight, the robot again checks the line sensor value after distance 
delay. If the robot encounters a straight line, then it stores the left path in path array and turns left after turn delay to ignore straight 
line. The robot turns till it encounters the straight line and state transition occurs from Go left to Follow line. When the robot 
encounters only left turn, the path taken is not stored in path array. When a state transition occurs from Follow Line to check right or 
straight, the robot again checks line sensor value after distance delay. If the robot encounters a straight line, then it stores the 
straight path in path array and continues the straight path. When the robot encounters only right turn, a state transition occurs from 
Follow Line to Go right and the path taken is not stored in path array. While following a straight line, if the robot detects no line for 
more than a certain period, a state transition occurs from Follow Line to U turn. The robot rotates by an angle of 180 degrees around 
itself till it encounters white line. Being an incorrect decision, the path is stored in path array. When the robot intercepts an 
intersection, a state transition occurs from Follow Line to Check intersection or maze end. The intersection is checked whether it is a 
cross or a T by detecting a straight line after a distance delay. The robot turns left till it encounters a straight line and the path taken 
is stored in path array. To detect the end of maze after encountering an intersection, the line sensors are again checked for same 
intersection after a delay. When the robot reaches the end of the maze, a state transition occurs and the robot stops. The stored path 
is taken as output in the form of an array to calculate the shortest path.  

D. Shortest Path Stateflow 
To traverse the maze in shortest time avoiding dead ends, the mode of the stateflow is set to the shortest path run. In this mode, 
some inputs are disabled while other required inputs are enabled. The path array received from the dry run is processed by shortest 
path MATLAB function and given as input for shortest path run. Initially, the counter is set to zero. Whenever the robot encounters 
an intersection, the counter is incremented and the respective path from the shortest path array is selected. The function of the robot 
terminates when it reaches the end of the maze. It also involves the weighted average error function and PD control to follow the 
line. The shortest path stateflow does not store the path at the intersection as it already knows the decision at every intersection. 

VII. KINEMATICS OF DIFFERENTIAL DRIVE ROBOT 
The mechanical parameters are critical for designing an accurate control system of Line Following Robot. To understand the 
movement of a robot, it is important to consider the contribution of its wheels. The direction of robot can be changed by varying the 
relative rate of rotation of its wheels and hence does not require an additional steering force. To balance the robot, additional wheels 
or caster wheels may be added at the front part of the robot. For Line Following Robot application, Differential Drive mechanism is 
used. Differential Drive robot has two wheels that can turn at different rates and by turning the wheels at different rates you can 
make the robot move around. Typically, it has two wheels at the back and a caster wheel at the front. The velocity of each wheel can 
be controlled independently. For instance, if they are turning at the same rate, the robot is moving straight ahead. If one wheel is 
turning slower than another, then robot turns towards the direction in which the slower wheel is located.  

A. Forward Kinematics 
= ݒ ோ

ଶ
(߱ோ  +  ߱)    (5) 

߱ = ோ


(߱ோ −  ߱)               (6) 
B. Inverse Kinematics 

߱  = ଵ
ோ

ݒ) −  ఠೃ
ଶ

)                 (7) 

߱ோ  = ଵ
ோ

ݒ) +  ఠಽ
ଶ

)                 (8) 
 

    
                                                                                                                                                           
 
 
 
 
 
 

Fig. 12 Mechanism of differential drive considering the architecture of real-world robot model implementation. 
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As shown in Fig. 12, L is the perpendicular distance between the centre of the two wheels, ωL and ωR are the left and right wheel 
angular velocities respectively and R denotes the radius of the wheel. These expressions for linear velocity v and angular velocity ω 
contain most necessary information to plan the position of the robot. These parameters may vary depending   on the architectural 
model of the robot. The Robot is very sensitive to the slight changes in velocity of each of its wheels. Small errors in the relative 
velocities between the wheels can affect the robot trajectory. 

VIII. ROBOT SIMULATOR 
The Robot Position and orientation can be placed using Robot Simulator Block. The differential robot pose [x y θ] is updated using 
left wheel angular velocity ωL and right wheel angular velocity ωR.  
 
The dynamics of differential robot are given by,                       The pose of the robot is updated with time interval Δt as,                                                                   
ܺ̇ = ோ௦Ɵ∗(னୖ ା ன)

ଶ
   (9)                                      ܺାଵ = ܺ + ∆t ∗ X   (12) 

             
ܻ̇ = ோ௦Ɵ∗(னୖ ା ன)

ଶ
                (10)                                     ܻାଵ = ܻ + ∆t ∗ Y   (13) 

 
Ɵ̇ = ோ∗(னୖି ன)


   (11)                                      Ɵାଵ = Ɵ + ∆t ∗ Ɵ   (14) 

Where X is position along x-axis, Y is position along y-axis, θ is the angle of the robot with respect to x axis on binary map, Δt is 
the sampling time, XK, YK, θK are the position at instance of time t. For simulation, Simulink blocks are used to get robot’s 
forward and inverse kinematics. Although, it is a completely autonomous robot, the starting position is given to Robot Simulator 
block which is considered as (X0, Y0, Ɵ0). It determines the next coordinates at interval ∆t  according to the (12), (13) & (14) and 
maps them on the maze. The derived position is given to the Robot Simulator block which updates the robot position over the binary 
occupancy map of the maze. The sampling time is set to 0.01. The Inverse kinematic block takes robot’s linear velocity and angular 
velocity as inputs and converts it into left wheel angular velocity and right wheel angular velocity as outputs using robot parameters 
as in (7) & (8).  Similarly, as per (5) & (6), forward kinematic block takes Left wheel angular velocity and right wheel angular 
velocity as input and converts it into linear velocity and angular velocity as output which makes the robot to move around. The robot 
uses Axle Length and wheel radius as its parameters for simulation blocks.  

IX. LINEAR TIME INVARIANT MOTOR MODEL 
A Motor model is created to get the wheel angular velocity response similar to an actual DC motor. A simple model of a 
DC motor driving an inertial load shows the angular rate of the load, ω(t), as the output and applied voltage υapp (t) as the input. 
The goal is to control the angular velocity rate by varying the applied voltage. In this model, the dynamics of the motor itself is 
idealized. For instance, the magnetic field is assumed to be constant. With this model and laws of physics, it is possible to develop 
differential equations that describe the behavior of this electromechanical system. The relationships between electric potential and 
mechanical force are given by Faraday's law of induction and Ampère's law for the force on a conductor moving through a magnetic 
field.  

A. Mathematical Derivation 
 

 
Fig. 13 Underlying mechanism of Linear Time Invariant (LTI) Motor Model. 
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The mechanical part of the motor equations is derived using Newton's law, which states that the inertial load is J times the derivative 
of angular rate equals the sum of all the torques about the motor shaft. Hence, the equation is, 
ܬ ௗఠ
ௗ௧

= ∑߬ = (ݐ)߱ܭ−   (15)        (ݐ)݅ܭ +
 
where Kfω(t) is a linear approximation for viscous friction and the term Kmi(t) represents the torque τ at the motor shaft, Km, the 
armature constant. 
 
The back (induced) electromotive force, υemf, is a voltage, proportional to the angular rate ω at the shaft. 
(ݐ)ݒ = ܭ  (16)        (ݐ)߱.
 
where Kb, the emf constant, also depends on certain physical properties of the motor. Finally, the electrical part of 
the motor equations can be described by 
 
(ݐ)ݒ − (ݐ)ݒ = ܮ ௗ

ௗ௧
+  (17)                                     (ݐ)ܴ݅

 
Equation (17) gives two differential equations that describe the behaviour of the motor. 
 
ௗ௬
ௗ௫

=  − ோ

−(ݐ)݅  ್


(ݐ)߱ + ଵ


 (18)        (ݐ)ݒ

 
ௗఠ
ௗ௧

=  − ଵ

(ݐ)߱ܭ +  ଵ


 (19)                           (ݐ)݅ܭ

B. State-Space Equations for the DC Motor 
Considering the (18) & (19), one is able to develop a state-space representation of the DC motor as a dynamic system. The 
current i and the angular rate ω are the two states of the system. The applied voltage, υapp, is the input to the system, and the 
angular velocity ω is the output. 
 

ௗ 
ௗ௧
ቂ ݅߱ቃ =

⎣
⎢
⎢
⎢
⎡−ܴ ൗܮ

ܭ−
ൗܮ

ܭ
ൗܬ

ܭ−
൘ܬ

⎦
⎥
⎥
⎥
⎤

. ቂ ݅߱ቃ + ቈ
1
ൗܮ

0
 .  (20)  (ݐ)ݒ

 (A)                              (B) 
                    

(ݐ)ݕ = [0 1]. ቂ ݅߱ቃ+     (௧)ݒ.[0]

           (21) 
             (C)              (D) 
 
The state-space representation is constructed using the 
Simulink State Space block. In state-space motor model block, 
(20) & (21) are needed to be specified in the form, 
                   
ௗ௫
ௗ௧

= ݔܣ +                               (22)      ݑܤ
ݕ = ݔܥ                         (23)      ݑܦ+
 
These parameters can be derived by estimating parameters of a DC motor from measured input and output data using Simulink 
Design Optimization tool. In this case, the parameters of 12V-600rpm Micro Metal Gear Motor is taken into consideration for motor 
modelling. 

 

 
Fig.14 Step Response of angular velocity of LTI Motor 
according to voltage variation with respect to time 
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Table IV 
Parameters of 12V-600 rpm Micro Metal Gear Motor. 

Parameter Description Unit Value 

R Armature 
resistance 

Ohm 16 

L Armature 
inductance 

H 0.5 

Km Torque constant Nm/A 0.084 

Kf Rotor damping 
coefficient 

N*m/(rad/s) 0.000025 

Kb EMF constant V/(rad/s) 0.19 

J Rotor moment 
of inertia 

kg.m^2 0.0001 

 
As shown in Fig. 14, although there is immediate voltage drop, due to Rotor’s inertia, the resulting angular velocity falls gradually. 
Before adding the LTI motor model in simulation, the relation between Angular velocity of motor and Input Voltage is derived by 
varying the voltage from -12V to 12V. The obtained values are specified in a 1-D Lookup Table block. 

 
Fig. 15. Relationship between angular velocity and voltage required Space Model.  Fig. 16. Robot Simulator Block with Motor State 

for 1-D Lookup Table Block 

The output (v, ω) from Stateflow is given to 1-D lookup table. The lookup table output is the voltage corresponding to the angular 
velocity of the left and right motor. This voltage is supplied as input to the Motor State-Space block. The output of the motor is 
given to the Robot Simulator block for mapping the motion on two-dimensional output screen on computer. 

X. OUTPUT 
The robot simulator block is used to visualize the Line Following Maze Solver Robot on a binary occupancy map. The parameters 
such as linear velocity, PD gain constants, distance delay and turn delay are calibrated until the robot achieves steady transient 
motion. Stateflow offers visualization of instantaneous state transition, thus providing ease to the developers while debugging the 
algorithm. The MATLAB simulation model can be used for multiple robots having similar architecture by modifying some 
parameters. Each block in Fig. 17 shows the implementation that is explained in earlier sections. During the testing phase, the mode 
is set to 0 for dry run simulation initially to obtain a path traversed through the maze. The obtained path is passed to a MATLAB 
function block as parameter to determine the shortest path if any. For the actual run, shortest path information is used while setting 
the robot in mode 1. A state in the stateflow is highlighted corresponding to the activated condition along with the interconnections. 
Hence, real time visualization can be done to debug the algorithm in case of malfunctioning of the robot. 
The goal is achieved as the robot takes the shorter path in the actual run than dry run. We can observe in Fig. 18, the dark shaded 
path indicates dry run traversal while the light shaded path is resulting from the shortest path run. Two wrong decisions taken by the 
robot at two different intersections in dry run are eliminated at the time of shortest path run, thus solving the maze in minimum 
possible time. 
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A set of experiments have been carried out to validate the simulation. The results in the Table IV show the variation in time duration 
to complete the Dry run and Shortest path run. The robot parameters such as PD values, distance delay, turn delay, etc. have to be 
adjusted to get the desired results. It has been found that the variations in turn velocity significantly improves the time taken by the 
robot during dry and shortest path run. 

 

Fig. 17 Complete Simulation using Simulink blocks. 
 
 

                                     
          Fig. 18 Output Path Resulting from the Dry Run Traversal and Shortest 
          Path Run Traversal 

XI. CONCLUSION 
This paper explains the simulation workflow of Line Following Maze-solver robot in MATLAB. This software is selected as it 
includes the mobile robotics library which offers multiple features required for the proposed simulation having compatibility on 
various platforms along with detailed online documentation. In comparison with real world testing, simulation offers the absolute 
approach by enabling an individual to operate from anywhere irrespective of the location.  It is possible to achieve the precision of 
the output model with least error despite the unavailability of the resources and reduces the development time for entire hardware 
model.  

Linear 
Velocity 
m/s 

Turn 
velocity 
Rad/s 

Dry 
run 
time 
(s) 

Short run 
time (s) 

0.1 1 121.29 98.18 
0.1 2 104.6 85.25 
0.2 1 80.44 63.45 
0.2 2 62.63 51.74 
0.3 1 63.76 49.85 
0.3 2 48.40 38.35 
0.4 1 55.75 42.64 
0.4 2 40.87 31.38 
0.5 1 51.55 39.15 
0.5 2 36.46 28.05 

Table v                                                                                                                      
Effect on runtime due to variation in velocities. 
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Any changes in the characteristic components such as DC motor and line sensor array can significantly affect the simulation and 
hence, the corresponding parameters must be adjusted accordingly. The received simulation parameters can be further used in 
hardware such as Arduino microcontroller for real time testing and debugging. However, in some cases, it may be require to 
calibrate the parameters as the actual behavior of the components differs from the expected behavior. The robot must be traversed in 
both the modes whenever it resets as the path information is stored in volatile memory thus it gets wiped on shutting down. In order 
to retain the information, we can store it in non-volatile memory.  Line Following Maze-solver robot has countless applications in 
healthcare services and industries such as automated carriers replacing the conveyor belts and in robot based food serving 
techniques in restaurants.  
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