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Abstract: Authentication is important factor in most of the application to perform the verification process. There are several 
factors are used to verify the personal identifies but biometric characteristics are most important one because everyone are 
having specific biometric features. Due to the easy access, minimum cost, stable features are leads to chose the finger knuckle 
print for authentication purpose. Initially, finger knuckle print images are collected from people which are processed by applying 
mean filter. Then the finger knuckle region is located by applying the optimized dual clustering approach. Then the various 
features are extracted which are trained with the help of the sigmoid activation function with radial neural network. Finally, the 
extracted features are matched with the trained feature using Manhattan length. This described matching process helps to 
authenticate the users. At last efficiency of the system is evaluated using MATLAB based experimental results such as false 
acceptance rate, equal error rate and false rejection rate. 
Keywords: Authentication, biometric characteristics, finger knuckle print, sigmoid activation function with radial neural 
network, Manhattan length 

I. INTRODUCTION 
Now-a-days most of the applications utilizes the authentication system [1] for managing the user information and providing security 
to their details. For maintaining security, biometric systems are played a vital role because it effectively authenticates the person 
information and granted the access permission. The biometric system [2] utilizes the user traits, characteristics and identities for 
analyzing the authorized user in the application. There are several traits such as signature, DAN, palm veins, face, foot print, retina, 
hand print, hand geometry, dorsal vein, voice, rhythm, gait and finger knuckle print [3] are used to maintain the user information.  
With the help of these biometric features different applications such as hospital systems, educational institutions, sports 
management system, bank management systems are creating the secure system. Among the different biometric features, in finger 
knuckle biometric features having specific in texture information, contact less, stable one, easy to capture and easy to acceptance. 
Due to this specific characteristic most of the application uses the finger knuckle print [4] for biometric authentication system. In 
addition to this, the finger knuckle print biometric features have varied from one person to other person in terms of both key point 
and connectivity between the key points. So, the finger knuckle print feature ensures almost maximum security to user details in the 
application. According to the discussion, the general representation of finger knuckle print figure is depicted in figure 1. 

 
Fig. 1 Sample image for finger Knuckle Print Biometric Feature 
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Figure 1 demonstrated that the sample image for finger knuckle print biometric feature [5]. The images consist of several knuckles 
such as top, middle and base knuckle. Each knuckle having the different key points which are different from person to person. So, as 
discussed earlier, the finger knuckle print ensures the maximum security to the data. This captured biometric images are processed 
by applying different image processing [6] and machine learning techniques. The techniques are extract the meaningful information 
which are used to match the test biometric feature with trained biometric feature. According to the discussion, the captured finger 
knuckle print images are processed by different researcher to provide the security to data. Here, few research author opinions are 
analyzed to get idea about finger knuckle print biometric system.  
(Xiong M., Yang W., Sun C. (2011))[7] creating effective finger knuckler print biometric authentication system using local Gabor 
binary pattern approach. The captured images are processed by applying the binary pattern approach which successfully recognize 
the finger print images and matching the testing features with training features. This knuckle print based recognition process ensures 
the authentication when compared to other methods. (Attia, A et al., 2018) [8] developing person recognition system in bank using 
finger knuckle pattern and multi scale binarized statistical texture features. Initially, finger knuckle print images are captured from 
person which are processed by region of interest approach which extract the knuckle region. Then the binarized statistical image 
features are derived from knuckle region which are trained with the help of convolution filters. The continuous learning process 
improves the overall person identification rate. In addition to this, principle component analysis with linear discriminate analysis 
technique to minimize the dimensionality of features. Finally, the persons are identified with the help of nearest neighbor with 
Mahalanobis distance measure. Then the created system efficiency is evaluated using Poly finger knuckle print database and the 
developed system ensure the maximum recognition accuracy. 
(Bahmed F., et al., 2019) [9] analyzing different multi-biometric hand recognition system for improving security in airports as well 
as companies. This work survey different biometric features among that fingerprint features are having unique characteristics which 
helps to create the effective biometric modalities.  
The created hand biometric modalities system ensures the maximum authentication results compared to other biometric features.  
Hossain E., Chetty G. (2013) [10] developing the human identification system using the multi-model feature learning along with 
gait biometric features. Initially, the gait features are collected from CASI Multiview multispectral and UCMG Multiview database. 
The collected biometric features are processed and different statistical features are derived using principle component analysis and 
linear discriminate analysis approach.  
Then the extracted features are trained by applying the deep learning process that successfully train the features to performing the 
person identification process. Finally, the identification process is done by applying different techniques such support vector 
machine, multilayer perceptron and neural network techniques. Thus, the introduced system successfully recognizes the person due 
to the deep learning-based feature training process. According to the various author’s opinion, the effective biometric system needs 
to be created to minimize the unauthorized access. For ensuring this objective, in this work, intelligent neural network approach is 
introduced to process every step involved in the biometric authentications system.  
Then the rest of the section is arranged as follows, section 2 discusses about the introduced intelligent neural network based 
biometric authentication system. Section 3 analyze the efficiency of introduced biometric authentications system and conclusion is 
discussed in section 4. 

II. FINGER KNUCKLE PRINT BIOMETRIC AUTHENTICATION SYSTEM  
The finger knuckle print biometric authentication [11]system is created using intelligent neural network. The developed system 
effectively analyzes each user traits to providing the authorization for accessing the information or application. As discussed above, 
the finger knuckle print having effective characteristics, fine texture and other reasons are main intension to this biometric feature 
for providing authentication. During the biometric authentication polyU knuckle print image set is used for evaluating the created 
system efficiency.  
According to the discussion, the general processing step for knuckle print biometric authentication system structure is depicted in 
figure 2. 
The above figure 2 illustrated that the finger knuckle prints biometric authentication system structure. The biometric system consists 
of several steps such as image collection, noise removal, knuckle region extraction, feature extraction and feature matching process. 
These steps are effectively analyzing the captured knuckle print image and recognize the authorized users successfully. The detailed 
explanation of the processing procedures is discussed as follows. 
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Fig. 2 Finger Knuckle print Biometric Authentication System Structure  

A. Image Nose Removal  
Initially, the finger knuckle print images are collected from Poly image dataset [12]. The collected images are having several 
unwanted pixel information due to the low resolution, image shake, name and low capturing process. These unwanted information 
damage the entire biometric system efficiency. So, the noise present in the knuckle print image is eliminated by applying the mean 
filter [13]. The captured image pixels are analyzed and compared with the threshold value which is determined according to the 
pixel range. If the pixel range is deviated from the threshold values, that should be replaced with the help of mean value. The mean 
value is estimated by considering the neigh boring pixel details. This process is continued to entire image pixel for replacing the 
unwanted or inconsistent image pixels. Based on the discussion, the noise removed finger knuckle print images are shown in figure 
3. 

 
(a)                                                         (b)                                                 (c) 

Fig. 3 (a) PolyU data base image   (b) grayscale converted image   (c) noise removed image  

After eliminating the noise present in the image, knuckle region must be identified because it played a vital role in person 
authentication.  
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B. Knuckle Region Segmentation  
The second step of the work is to segmenting the knuckle region from the noise removed finger knuckle print biometric features. In 
this work dual clustering approach [14] is used for segmenting the knuckle regions. The introduced method works according to 3 
characteristics which helps to improve the overall region identification process. Initially, image histograms are identified using the 
probability density and cumulative density value.  
Based on the histogram value, images are divided into different clusters. The formed clusters having the high gradient value of 
borders that helps to identify the exact knuckle region.  
This cluster formation consists of two spaces, the first space uses the one-dimensional histogram value for representing the image 
brightness level H=HB). Next space uses the dual three-dimensional space which denote the original finger knuckle print image that 
is represented as B=B(x,y).  
The one-dimensional space is analyze the images according to the image brightness value and how effectively the brightness of the 
image is distributed are analyzed which is done by using the minimal clustering process (Kmin). After that the threshold brightness 
(T) value related minimal cluster values is identified which is represented as the binary image (black-white image). Generally, the 
formed cluster bitmap is represented as, 

ܾ = ,ݔ)߮  (1)       (ݕ

൜ ߮
,ݔ) (ݕ = (ݕ,ݔ)ܤ ݂݅    0 < ܶ

(ݕ,ݔ)߮ = (ݕ,ݔ)ܤ  ݂݅     1 ≥ ܶ     (2) 

From the computed cluster, bitmap b is represented as the object in dual space. The estimated bitmap value helps to identify the 
distribution of black or white pixels in image.  
The main intension of the bitmap process is used to predict the exact and good border for knuckle region. So, the entire image 
threshold value T, the dual clustering process for image is computed using eqn (3). 

ܯ = ீ
(∗)

       (3) 

In eqn (3), k represented as the brightness difference between background and object, 

L is border length. 

G is border mean gradient value. MDC is represented as the maximum of clustered region. 

Based on the above dual clustering analysis, knuckle region along with borders are identified effectively. Based on the discussion, 
the sample segmented knuckle region is represented in figure 4. 

              
(a)                                                                                  (b) 

Fig. 4 Sample Knuckle region segmented image  

C. Finger Knuckle Region – Feature Extraction  
Third step of the work is to deriving the meaningful features from the extracted knuckle region. Here different statistical features [15] 
are derived to understand the characteristics of knuckle segmented region. The list of extracted knuckle features is listed in table 1. 
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TABLE I 
Knuckle Region-Extracted Features List 

Features Related Formula 

Entropy  − ln൫ ܲ൯
ିଵ

,ୀ
ܲ  

Correlation  ܲ

ିଵ

,ୀ

(݅ − ݆)(ߤ − (ߤ
ଶߪ  

Energy ൫ ܲ൯
ଶ

ିଵ

,ୀ

 

Contrast  ܲ(݅ − ݆)ଶ
ିଵ

,ୀ

 

Cluster Shade ൫݅ + ݆ − ௫ߤ − ௬൯ߤ
ଷ

,݅). ݆)
ିଵ

ୀ

ିଵ

ୀ

 

Variance (݅ − ,݅).ଶ(ߤ ݆)
ିଵ

ୀ

ିଵ

ୀ

 

Mean  (݅)௫ା௬.݅
ଶ(ିଵ)

ୀ

 

Cluster Prominence ൫݅ + ݆ − ௫ߤ − ௬൯ߤ
ସ

,݅). ݆)
ିଵ

ୀ

ିଵ

ୀ

 

Inertia  (݅ − ݆)ଶ.(݅, ݆)
ିଵ

,ୀ
 

Skewness ିߪଷ (݅ − ଷ(ߤ
ିଵ

ୀ
.  (݅)

Kurtosis ିߪସ ((݅ − ସ(ߤ
ିଵ

ୀ
. ((݅) − 3 

Based on the table I, different statistical features are extracted from knuckle region which are more helpful to authenticate the user 
information. The extracted features are trained and stored in the database for making the matching process.  

D. Feature Training and Matching Process  
Fourth step of the work is to performing the feature training or learning process because it provides the proper guidelines while 
matching the testing and training process. In this work, sigmoid activation function with radial neural network is used to feature 
training purpose. Radial basis neural network [16] is one of the effective supervised artificial networks which process the non-linear 
inputs and produces the output in terms of linear form. It is one of the fastest learning algorithms and produces the output using 
three layers such as input, hidden and output layer. The section 2.3 extracted features are taken as non-linear inputs and transferred 
into the hidden layer. In hidden layer radial basis (radbas) activation function is used to process the consumed input. During the 
computation process, number of hidden layers are chosen according to the number of neurons involved in the input layer. These 
hidden layers are successfully analyze the input features using radbas function to get the output in the hidden layer. Then the 
graphical representation of radbas activation function is represented in figure 5. 

 
Fig. 5 Radial basic activation function representation   



International Journal for Research in Applied Science & Engineering Technology (IJRASET) 
                                                                                           ISSN: 2321-9653; IC Value: 45.98; SJ Impact Factor: 7.429 

                                                                                                                Volume 9 Issue V May 2021- Available at www.ijraset.com 
     

 1416 ©IJRASET: All Rights are Reserved 
 

In addition to this activation function, center and spread factors are utilized in the feature training process to improve the overall 
matching process. The centers are determined according to the k-means clustering process which is computed using eqn (4). 

∑݊݅݉݃ݎܽ ∑ ݔ‖ − ‖ଶ௫∈௦ߤ

ୀଵ       (4) 

In eqn (4)ߤ is the mean at the center point ݏ. According to the center value, the incoming features are trained using the radbas 
activation function. Further the exact output for input is determined by applying the sigmoid activation function. Then the output 
value of input is estimated using eqn (5). 

(ݔ)ݏ = ଵ
ଵାషೣ

       (5) 

In eqn (5) x is the input to the network. According to the computation, the output value is estimated for each input and stored as 
template in the database. Finally, the matching process is performed to maintain the authentication. When the new person enters the 
system, their finger knuckle print images are collected processed according to section 2.1 to 2.3. The extracted features are matched 
with the template features which is done by applying the Manhattan lengthmeasure[17]. This distance measure also called as the 
taxicab geometry that usually predict the distance between the template and testing features. The distance computation is done by 
using eqn (6). 

݀ଵ(ݍ,) = ‖ − ଵ‖ݍ = ∑ | − |ݍ
ୀଵ     (6) 

In eqn (6) p and q is represented as the training and testing features in the list. Based on the computation, the minimum distance 
between the features are selected as the valid features else the users are restricted to entered the system. Then the overall efficiency 
of the introduced system is evaluated using experimental results and discussion. 

III. RESULTS AND DISCUSSIONS  
The efficiency of introduced finger knuckle print biometric authentication system (DCRBML) efficiency is evaluated in this section. 
As mentioned earlier, in this work, polyU finger knuckle print image dataset is used for analyzing efficiency of biometric system. 
The dataset consists of around 7920 images that was captured from 125 male and 40 females. Here the sample polyU dataset images 
are depicted in figure 6. 

 

Fig. 6 Sample PolyU FKP-images    

The gathered FKP images are processed according to the section 2.1 to 2.4 discussion and the matching process is done by using the 
Manhattan length measure. This discussed process is developed using MATLAB tool and the excellence of the system is evaluated 
using different metrics such as false acceptance rate, equal error rate, accuracy and false rejection rate. False acceptance rate is 
nothing but how effectively developed system reject the false person biometric features. The eqn (7) used to compute the false 
acceptance rate. 

ܴܣܨ = ே௨  ௧௨௦ ௧ௗ
ே௨  ௧௨௦ ௧௦௧ௗ

  * 100                                                        (7) 
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According to eqn (7) computation, the estimated FAR value related graphical analysis is shown in figure 7. 

 
Fig. 7 False Aceptance Rate - DCRBML    

The figure 7 clearly illustrate that the dual clustering with radial basis-Manhattan lengthapproach (DCRBML) attains low false 
acceptance rate. The obtained results are low compared to other recognition method such as Artificial Neural Network (ANN)[18], 
Multi-layer Neural Network (MLP) [19] andBack propagation Neural Network (BPNN) [20]. The successful detection of knuckle 
region, borders accept the false features with minimum rate (0.312%) compared to other approaches such as ANN(0.64%), 
MLP(0.53%) and BPNN (0.48%). Along with the FAR value, false rejection rate of introduced system must be computed. Rejected 
rate nothing but how effectively introduced system reject the right feature when access the system. The rejection rate is computed 
using eqn (8). 

ܴܴܨ = ே௨    ௧௨௦ ௧ௗ
ே௨     ௧௨௦ ௧௦௧ௗ

∗ 100   (8) 

Depending to the eqn (8) computation, the estimated false rejection rate related graphical analysis shown in figure 8. 

 
Fig. 8 False Rejection Rate-DCRBML 

The figure 8 clearly illustrate that the dual clustering with radial basis-Manhattan lengthapproach (DCRBML) ensures minimum 
false rejection rate. The obtained results are low compared to other recognition method such as Artificial Neural Network 
(ANN)[26], Multi-layer Neural Network (MLP) [27] and Back propagation Neural Network (BPNN) [28]. The effective derivation 
of knuckle region related features are used to reject the right features with minimum rate (0.135%) compared to other approaches 
such as ANN(0.35%), MLP(0.31%) and BPNN (0.255%). In addition to this FAR, FRR, the system equal error rate must be 
computed which is depicted in figure 9. 
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Fig. 9  Equal Error Rate-DCRBML 

Figure 9 demonstrated that the dual clustering with radial basis-Manhattan length approach (DCRBML) has low equal error rate 
collated with the other recognition method such as Artificial Neural Network (ANN), Multi-layer Neural Network (MLP) and Back 
propagation Neural Network (BPNN). In addition to these, error rate, the finger knuckle print based biometric authentication system 
accuracy level need to be evaluated. Then the obtained authentication accuracy value is depicted in  table II. 

Table II 
Authentication Accuracy 

Sl. 
No. 

Methods Authentication Accuracy 

1 Artificial Neural Networks (ANN) 94.23 
2 Multi-layer Neural Network (MLP) 94.87 
3 Back propagation Neural Network (BPNN) 95.78 
4 dual clustering with radial basis-Manhattan length 

approach (DCRBML) 
98.76 

 

From the table II it clearly depicted that the dual clustering with radial basis-Manhattan lengthapproach (DCRBML) ensures 
maximum authentication accuracy compared to other methods. Due to the effective segmentation of knuckle region, knuckle 
features help to maximize the matching process and authentication process.  

IV. CONCLUSIONS 
Thus, in this manuscript analyze the dual clustering with radial basis-Manhattan length approach (DCRBML) based biometric 
authentication system. Initially, polyU finger knuckle database images are collected and the noise present in the images are 
eliminated with the help of mean value. Then image region is located by computing the image histogram and border value. Based on 
these values, the knuckle region is identified and segmented. From the segmented region different features are extracted which are 
trained using radbas activation with sigmoid activation function based radial neural networks. Finally, the testing features are 
compared with the trained features using Mahanta length measure. The discussed system is developed using the MATLAB based 
simulation results in which system ensures 98.76% of authentication accuracy with minimum deviation rate. Further, the work is 
improved using the meta heuristic optimization neural network. 
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