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Abstract— The intermittent nature of solar irradiation makes it necessary to continuously track the irradiation and change 
the orientation of the solar panels so as to maximize the PV output. Since the nature of solar irradiation data is both 
extremely random and complex, hence classical statistical techniques render inaccuracies in the predicted values. Therefore, 
machine learning based approaches are needed for the estimation or forecasting of the PV output. The proposed approach 
employs the gradient descent-based approach for attaining the condition of maximum power point tracking (MPPT). The 
performance of the system has been evaluated in terms of the mean absolute percentage error and accuracy. It has been 
shown that the proposed system attains an accuracy of 96.31% with an MAPE of 3.69%. 
Keywords— Maximum Power Point Tracking (MPPT), machine learning, gradient descent, Mean absolute percentage error, 
Accuracy. 

I. INTRODUCTION 
One of the biggest challenges in computing the MPPT is the intermittent and random nature of solar irradiation.  Computing the 
MPPT requires finding the relation among several variables such as time, temperature of solar plate, irradiation, orientation of 
plate, produced PV power etc. The data to be analysed is generally extremely complex in nature.  Due to the above-mentioned 
reasons, it is extremely challenging to accurately compute the MPPT and estimate the PV output with low MAPE and high 
Accuracy. 
One of the greatest motivations for carrying out this research work on MPPT is the ever-increasing energy demands that have 
surpassed the consumption of the world. The non- renewable sources are about to deplete as they have been used enormously. 
Hence the main motivation of this work has been to find newer and better mechanisms to facilitate the harnessing potential of 
the solar renewable energy. This would help with better research prospects in this highly beneficial area of work. Solar power 
has to be acquired properly and to its maximum potential that can help in energy management of the world today. The 
randomness and variations have to dealt with, and a novel approach is to be designed that can predict the local and local solar 
irradiance with great accuracy. The grid transmission systems cannot be properly planned as a consequence. So to overcome 
these limitations and use the solar power effectively, there is need for MPPT. The solar thermal power plants use the direct 
irradiation of solar power to integrate into the conventional primary energy source. But as the solar irradiance is variable in its 
measure, it becomes inaccurately harnessed. Hence the main aim is to design an effective system to implement MPPT to 
enhance the effectiveness of PV cells. 

II. MATHEMATICAL MODELLING AND CHARACTERISTICS OF SOLAR PV CELLS 
A model of PV cell with current source-based circuit is depicted in this section. 

 

 
Fig.1 The equivalent circuit of a PV array 

 
Where, Rs denotes array series resistance in Ω,  
Rp denotes array parallel resistance in Ω,  
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I and V are the output current and voltage of the array in Ampere and Volt. 

 

Where, 
 
Iph is photo current in Amp, 
Irs is saturation current in Amp, 
Ns and Np are the number of series and parallel modules, 
q is charge on electron in coulomb, 
A is diode ideality factor, 
T is cell Temperature with change in irradiation in degree kelvin. 
 
Now, 

 

 

 
Where, 
 
Iscr is Short circuit current at reference Temperature in Amp, 
Irr is reverse saturation current in Amp, 
Tr is reference temperature in Kelvin, 
S is solar irradiance in mW/Sq. cm, 
Ki is S.C. current Temp. coefficient in (Amp/Kelvin), 
K is Boltzmann’s constant, 
Eg is band gap energy of semiconductor used cell in joules, 
Also, 

 

 
Where, Ego = band gap at 0 kelvin and, 

 

 

A. Characteristics of  PV Cell 
Solar PV cells have a nonlinear characteristic where the output is directly dependent on the value of incident solar radiation and 
cell temperature. By varying the value of this two the output changes which is show in following figure. 

 
Fig.2 Characteristics of Solar PV Cells 
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From above figures it can be clearly seen that output of PV cells is directly proportional to incident solar radiation and inversely 
to temperature. The maximum power point of any cell is the peak point of above graph whose value changes with radiation and 
temperature hence a DC-DC converter is used to track that point to give maximum output at any point of time. 

B. Existing Challenges 
The existing problems and challenges with respect to solar power harvesting and MPPT is enlisted underneath: 
1) The set up for the solar power systems and solar panels comes with lots of financial investment and also needs time and 

effort.  
2) There are a lot of variations of solar irradiance depending upon the region of the sunshine and other meteorological 

factors like the temperature, sunshine intensity etc. 
3) The photo voltaic units of the solar systems need to forecast the solar radiation in advance for optimal energy 

management and planning. 
4) The prediction of the solar output power is very useful for planning the proper operation of the power grid systems for 

managing the solar fluxes optimally. 
5) As the solar irradiance from the sun is very fluctuating in nature, it becomes hard to obtain the photo voltaic power and is 

sometimes erroneous.  

III.  MACHINE LEARNING BASED SMART OPTIMIZERS 
The Machine learning can be crudely understood as the design of automated computational systems which mimic the human 
behaviour and can be trained in the sense that they can learn from data fed to the system. Primarily machine learning is 
categorized into three major categories which are: 
1) Unsupervised Learning: In this approach, the data set is not labelled or categorized prior to training a model. This typically 

is the most crude form of training wherein the least amount of apriori information is available regarding the data sets. 
2) Supervised Learning: In this approach, the data is labelled or categorized or clustered prior to the training process. This is 

typically possible in case the apriori information is available regarding the data set under consideration. 
3) Semi-Supervised Learning: This approach is a combination of the above mentioned supervised and unsupervised 

approaches. The data is demarcated in two categories. In one category, some amount of the data is labelled or categorized. 
This is generally not the larger chunk of the data. In the other category, a larger chunk of data is unlabelled and hence the 
data is a mixture of both labelled and unlabelled data groups.  

Some other allied categories of machine learning are: 
Reinforcement Learning 
Transfer Learning 
Adversarial Learning  
Self-Supervised learning etc.  
While these learning algorithms can be studied separately, however they are essentially the modified versions of unsupervised, 
supervised and semi-supervised learning architectures. A more advanced and useful category of machine learning is deep 
learning which is the design of deep neural nets with multiple hidden layers. The detailed description of these concepts follow. 

 
Fig.3 Categories of Machine Learning 
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Often, another sub-categorization made is the reinforcement learning which the type of learning in which the aim is to adjust the 
training parameters so as to maximize the rewards in certain circumstances. They may also possess categorically classified 
targets prior to training. Typically, some paradigms separate out machine learning and deep learning. 
In case of deep learning, the number of hidden layers are multiple and no separate feature extraction is done, and the data is 
directly fed to the neural network.  

 
Fig. 4 Machine Learning vs. Deep Learning 

IV.  MACHINE LEARNING BASED SMART OPTIMIZERS 
The gradient descent approach is explained below: 
As data is fed to a neural network for pattern recognition, the weights keep updating. However, it has been found that in case of 
time series problems, the latest data sample have the maximum impact on the latest output. Hence it is logical to calculate a 
moving average of latest (previous) data and apply it to the neural network [27]. This is also called a moving average. 
Mathematically, 

 
Here, 

is the kth input sample to the neural network 
are the data samples from the first to the kth sample 

is the mean of the data samples form k-n to k, i.e. it is a moving average depending on the value of k 

is the target 
 
The next step is to implement the back propagation given by: 
 

 
Here, 

 is the weight of the next iteration 
 is the weight of the present iteration 

e is the error 
α is the learning rate 

 
 
The chain rule in relation (4.6) can be used for computing the error gradient. The gradient descent can be implemented as: 

 
 

Here, 
 is the negative of the gradient vector  

 
For the kth iteration,  
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It is worth noting that the in addition to the weights, the search vector also keeps updating with the iterations. The term  is 
calculated as: 

 
 
The overall training rule for the algorithm can be mathematically expressed as: 

 

 
 
The essence of the algorithm can be summarized in the following points: 
1) The algorithm starts a search for the steepest descent vector right from the first iteration of training 
2) The steepest descent ensures fast training 
3) Step 2 ensures lower time complexity for the algorithm 
4) In addition to the update of weights, the steepest descent vector is also updated with the number of iterations. 

 
The objective function J can be minimized as: 
The aim of the approach is to attain the best fit regression line which is equivalent to saying that the co-efficient values θ1 and 
θ2 , should be adjusted such that to minimize the error between predicted y value (pred) and true y value (y). The cost function J 
is mathematically defined as: 

 
Here, 
n is the number of samples 
y is the target 
pred is the actual output 
 
The data is pre-processed to remove: 
Missing values 
Infeasible values 
Moreover, the data is structured to be fed to the ANN based on gradient descent. 
Subsequently, the data is classified into training and testing samples. 80% of the data has been used for training and 20% of the 
data has been used for testing. The gradient descent approach is utilized for the case. The system performance is evaluated in 
terms of: 
Mean Absolute Percentage Error (MAPE) 

 
 
Here At and At

~ represent predicted and actual values. 
N represents the number of predicted samples. 
 

Accuracy which is computed as: 
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Fig. 5 Flowchart of Proposed System with Gradient Descent 

The model has been simulated on MATLAB 2017a primarily due to the availility of standard training alforithms as inbuitt 
functions. The results obtained are put forth sequentially. 
The data utilized is the hourly data of solar PV output with the associated parameters. The data was fetched from the Solar 
Radiation Lab, ERCOT, University of Texas. 

 
Fig. 6: Dataset Used  
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Fig.7 Actual and modelled prediction 

The figure above depicts the accuracy with which the neural network is capable to predict future values. The MAPE is found to 
be 3.69%. Hence the accuracy is 96.31%. 

V. CONCLUSIONS 
The condition of MPPT is challenging due to the nature of Solar PV output which is extremely complex due to the nature of the 
irradiation. It can be concluded form the previous discussions that photovoltaic (PV) array is subject to partial shading 
conditions (PSC), several local maxima appear on the P-V characteristics curve of the PV array which are due to the use of the 
bypass diodes to avoid hot spots effect. Conventional algorithms can find it difficult to follow the pattern of solar irradiation 
owing to the fact that solar irradiation varies significantly and some may even become zero during nights. The proposed 
approach uses a gradient descent based approach  for solar MPPT with accuracy of 96.31%. 
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