

INTERNATIONAL JOURNAL FOR RESEARCH

IN APPLIED SCIENCE & ENGINEERING TECHNOLOGY

Volume: 9 Issue: VII Month of publication: July 2021

DOI: https://doi.org/10.22214/ijraset.2021.36673

www.ijraset.com

Call: © 08813907089 E-mail ID: ijraset@gmail.com

ISSN: 2321-9653; IC Value: 45.98; SJ Impact Factor: 7.429

Volume 9 Issue VII July 2021- Available at www.ijraset.com

Iterative Methods for the Solution of Semi-Nonlinear Systems with Linear Diagonals

Dr. V. B. Kumar Vatti¹, Kusuma Doddi², Santosh Kumar Mushinana³

¹Professor, Dept.of Engg. Mathematics, A U College of Engineering, Andhra University, Visakhapatnam, A.P, India ²Research Scholar/Dept of Engg, Mathematics, Andhra University, Visakhapatnam, A.P, ³Asst Professor, Dept of Engg, Mathematics, AvanthiInstitute of Engg & Technology, IndiaVisakhapatnam, A.P, India

Abstract: We discuss Jacobi, Gauss-seidel and SOR methods for the solution of semi-nonlinear systems with linear diagonals in this paper. A Comparison of these methods is done through an example.

Keywords: Non-linear equations, Iterative methods, Jacobi, Gauss-seidel, SOR.

I. INTRODUCTION

Let us consider a system of n non-linear equations in n unknowns of the form

$$\begin{cases}
f_1(x_1, x_2, \dots, x_n) = 0 \\
f_2(x_1, x_2, \dots, x_n) = 0 \\
\vdots \\
f_n(x_1, x_2, \dots, x_n) = 0
\end{cases}$$
.....(1.1)

If one can express the system(1.1) as in the following from

then, the system(1.2) can be called as semi-nonlinear system.

In the system (1.2), the functions $f_{11}(x_1)$, $f_{22}(x_2)$,...., $f_{nn}(x_n)$ are linear in x_1, x_2, \dots, x_n , then the system (1.2) can be called as semi non-linear system with linear diagonals.

We now write the semi non-linear system with linear diagonals as

$$\begin{vmatrix}
a_{11}x_1 + a_{12}f_{12}(x_2) + \dots + a_{1n}f_{1n}(x_n) = b_1 \\
a_{21}f_{21}(x_1) + a_{22}x_2 + \dots + a_{2n}f_{2n}(x_n) = b_2 \\
\vdots \\
a_{n1}f_{n1}(x_1) + a_{n2}f_{n2}(x_2) + \dots + a_{nn}x_n = b_n
\end{vmatrix}$$
.....(1.3)

ISSN: 2321-9653; IC Value: 45.98; SJ Impact Factor: 7.429

Volume 9 Issue VII July 2021- Available at www.ijraset.com

We assume throughout this paper that the matrix obtained from (1.3) i.e.,

is a positive definite matrix.

II. ITERATIVE METHODS

we now discuss the Jacobi, Gauss-seidel and SOR methods for solving the semi-non linear system with linear diagonals i.e., the system (1.3).

A. Jacobi Method

Firstly, we re-write system (1.3) as

Forming a matrix A_{c} by collecting the coefficients of the variables as well as functions, we have

$$A_{s} = \begin{bmatrix} 1 & \frac{a_{12}}{a_{11}} & \dots & \frac{a_{12}}{a_{11}} \\ \frac{a_{21}}{a_{22}} & 1 & \dots & \frac{a_{2n}}{a_{22}} \\ \dots & \dots & \dots & \dots \\ \vdots & \vdots & \ddots & \ddots & \vdots \\ \frac{a_{n1}}{a_{nn}} & \frac{a_{n2}}{a_{nn}} & \dots & \dots & 1 \end{bmatrix}$$
 (2.2)

ISSN: 2321-9653; IC Value: 45.98; SJ Impact Factor: 7.429 Volume 9 Issue VII July 2021- Available at www.ijraset.com

Splitting the matrix A_{ς} as

$$A_s = I - L_s - U_s$$
(2.3)

where $-L_s$ and $-U_s$ are strictly lower and upper triangular parts of the matrix A_s Now, the Jacobi respectively.

matrix for the semi non-linear system (2.1) is

$$J_{s} = (L_{s} + U_{s}) \quad \quad (2.4)$$
 Let λ_{i} be the eigenvalues of the jacobi matrix J_{s} such that $-1 < \lambda_{i} < 1 \dots (2.5)$

Let the maximum eigen values of the matrix J_s in magnitude i.e., the spectral radius of J_s be $\overline{\mu_s}$. Then ,we have

$$\rho(\mathbf{J}_s) = \max \left| \lambda_i(\mathbf{J}_s) \right| = \overline{\mu_s}$$

$$(\mathbf{i} = 1, 2, \dots, \mathbf{n})$$
(2.6)

The Jacobi method for the solution of the system (2.1) is given by

$$x_{1}^{(k+1)} = (b_{1} - a_{12}f_{12}(x_{2}^{k}) - \dots - a_{1n}f_{1n}(x_{n}^{k})) / a_{11}$$

$$x_{2}^{(k+1)} = (b_{2} - a_{21}f_{21}(x_{1}^{k}) - \dots - a_{2n}f_{2n}(x_{n}^{k})) / a_{22}$$

$$x_{n}^{(k+1)} = (b_{n} - a_{n1}f_{n1}(x_{1}^{k}) - \dots - a_{n,n-1}f_{n,n-1}(x_{n-1}^{k})) / a_{nn}$$

$$(k = 0.1, 2, \dots)$$

This method (2.7) converges as long as $\overline{\mu_s}$ of (2.6) is less than one.

B. Gauss-Seidel Method

The Gauss-Seidel method for the system (2.1) is given by

$$x_{1}^{(k+1)} = \left(b_{1} - a_{12}f_{12}(x_{2}^{k}) - a_{13}f_{13}(x_{3}^{k}) \dots - a_{1n}f_{1n}(x_{n}^{k})\right) / a_{11}$$

$$x_{2}^{(k+1)} = \left(b_{2} - a_{21}f_{21}(x_{1}^{k+1}) - a_{23}f_{23}(x_{3}^{k}) \dots - a_{2n}f_{2n}(x_{n}^{k})\right) / a_{22}$$

$$\vdots$$

$$x_{n}^{(k+1)} = \left(b_{n} - a_{n1}f_{n1}(x_{1}^{k+1}) - a_{n2}f_{n2}(x_{2}^{k+1}) \dots - a_{n,n-1}f_{n,n-1}(x_{n-1}^{k+1})\right) / a_{nn}$$

$$(k = 0, 1, 2, \dots)$$

ISSN: 2321-9653; IC Value: 45.98; SJ Impact Factor: 7.429

Volume 9 Issue VII July 2021- Available at www.ijraset.com

The Gauss-Seidel iterative matrix is

$$G_s = (I - L_s)^{-1} U_s \dots (2.9)$$

where L_s and U_s are as defined in (2.3).

This method converges as long as the spectral radius of G_s in magnitude is less than one i.e.,

$$\rho(G_s) < 1 \dots (2.10)$$

C. Successive Over Relaxation (SOR) Method

The SOR method for the solution of (2.1) is given by

$$x_{1}^{(k+1)} = (1-\omega)x_{1}^{(k)} - \omega \frac{a_{12}}{a_{11}} f_{12}x_{2}^{(k)} - \dots - \omega \frac{a_{1n}}{a_{11}} f_{1n}x_{n}^{k} + \omega b_{1}$$

$$x_{2}^{(k+1)} = -\omega \frac{a_{21}}{a_{22}} f_{21}x_{1}^{(k+1)} + (1-\omega)x_{2}^{(k)} - \dots - \omega \frac{a_{2n}}{a_{22}} f_{2n}x_{n}^{k} + \omega b_{2}$$

$$\vdots$$

$$x_{n}^{(k+1)} = -\omega \frac{a_{n1}}{a_{nn}} f_{n1}x_{1}^{(k+1)} - \omega \frac{a_{n2}}{a_{nn}} f_{n2}x_{2}^{(k+1)} - \dots - \omega \frac{a_{n,n-1}}{a_{nn}} f_{n,n-1}x_{n-1}^{k+1} + (1-\omega)x_{n}^{k} + \omega b_{n}$$

$$(k = 0,1,2,\dots)$$

where, the choice for the relaxation parameter ω of SOR method is

$$\omega = \frac{2}{1 + \sqrt{1 - (\overline{\mu_s})^2}}....(2.12)$$

where $\overline{\mu_s}$ is as defined in (2.6).

The SOR method (2.11) in matrix notation is

$$\begin{bmatrix} 1 & 0 & \dots & 0 \\ \omega \frac{a_{21}}{a_{22}} \frac{f_{21}(x_1)}{x_1} & 1 & \dots & 0 \\ \omega \frac{a_{31}}{a_{33}} \frac{f_{31}(x_1)}{x_1} & \omega \frac{a_{32}}{a_{33}} \frac{f_{32}(x_2)}{x_2} & 1 & \dots & 0 \\ \vdots & \vdots & \ddots & \vdots & \vdots \\ \omega \frac{a_{n1}}{a_{nn}} \frac{f_{n1}(x_1)}{x_1} & \omega \frac{a_{n2}}{a_{nn}} \frac{f_{n2}(x_2)}{x_2} & \dots & 1 \end{bmatrix}^{(K+1)} = \begin{bmatrix} x_1 \\ x_2 \\ x_3 \end{bmatrix}$$

ISSN: 2321-9653; IC Value: 45.98; SJ Impact Factor: 7.429

Volume 9 Issue VII July 2021- Available at www.ijraset.com

$$\begin{bmatrix} 1-\omega & -\omega \frac{a_{12}}{a_{11}} \frac{f_{12}(x_2)}{x_2} & \dots & -\omega \frac{a_{1n}}{a_{11}} \frac{f_{1n}(x_n)}{x_n} \\ 0 & 1-\omega & \dots & -\omega \frac{a_{2n}}{a_{22}} \frac{f_{2n}(x_n)}{x_n} \\ \vdots & \vdots & \ddots & \vdots \\ 0 & 0 & \dots & 1-\omega \end{bmatrix} + \omega \begin{bmatrix} x_1 \\ x_2 \\ \vdots \\ x_n \end{bmatrix}^{(k)} + \omega \begin{bmatrix} b_1 \\ b_2 \\ \vdots \\ b_n \end{bmatrix}$$

The SOR iterative matrix is

$$S_s = (I - \omega L_s)^{-1} \{ (1 - \omega) I + \omega U_s \} \dots (2.13)$$
 This method converges if $\rho(S_s) < 1 \dots (2.14)$

III. NUMERICAL EXAMPLES

A. Example 3.1

We consider a semi non-linear system with linear diagonals i.e.,

$$20x1 - x23 - x32 = 18
-x13 + 7x2 - 2x3 = 4
-x12 - 2x22 + 10x3 = 7$$
.....(3.1)

whose exact solution is a unit vector.

The matrix A_s for the system (3.1) as obtained in (2.2) i.e.,

$$A_s = \begin{bmatrix} 20 & -1 & -1 \\ -1 & 7 & -2 \\ -1 & -2 & 10 \end{bmatrix} \dots (3.2)$$

is positive definite and the eigen values of Jacobi matrix J_s i.e.,

$$J_{s} = \begin{bmatrix} 0 & 1/20 & 1/20 \\ 1/7 & 0 & 2/7 \\ 1/10 & 2/10 & 0 \end{bmatrix} \dots (3.3)$$

are 0.281822,0.042332 and 0.239490 and hence $\overline{\mu_s}=0.281822$. The relaxation parameter ω_s of SOR method as defined in (2.12), is obtained as $\omega_s=1.02068588 \ldots (3.4)$

The methods discussed in this paper are applied to obtain the solution of (3.1) up to an error less than 0.5×10^{-9} taking a null vector as an initial guess and

the results obtained are tabulated below along with the error $E = \sqrt{\sum_{i=1}^{n} |1 - x_i|}$.

ISSN: 2321-9653; IC Value: 45.98; SJ Impact Factor: 7.429

Volume 9 Issue VII July 2021- Available at www.ijraset.com

Table-1 Iterative compressions

Methods	No. Of iterations took for the convergence (n)	Error (E)
Jacobi	30	0.33675133e ⁻⁴
Gauss-Seidel	17	0.1083196e ⁻⁴
SOR	15	0.15692699e ⁻⁴

B. Example 3.2

For the following semi nonlinear system with linear diagonals

$$20x1 - x23 - x32 = 18
-x12 - 2x2 + 10x3 = 7
-x13 + 7x2 - 2x3 = 4$$
....(3.2)

the cofficeient matrix A_s is

$$A_s = \begin{bmatrix} 20 & -1 & -1 \\ -1 & -2 & 10 \\ -1 & 7 & -2 \end{bmatrix} \dots (3.3)$$

and the jacobi matrix J_s is

$$J_s = \begin{bmatrix} 0 & 0.05 & 0.05 \\ 0.5 & 0 & -5 \\ 0.5 & -3.5 & 0 \end{bmatrix} \dots (3.4)$$

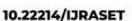
It is calculated that the eigen values of A_s and J_s are 20.1458, 6.2203, -10.3661 and 0.012108, -4.195313, 4.183205 respectively. And hence, the matrix A_s is not positive definite and the eigen values of J_s are not less than unity in magnitude.

IV. CONCLUISON

As seen in the above tabulated results that the Jacobi, Gauss-Seidel and SOR methods works well as long as the matrix A of (1.4) is positive definite and it is also observed from example (3.2) that all the methods discussed in this paper diverged if A of (1.4) is not positive definite.

REFERENCES

- [1] Kuo.M. Solution of nonlinear equations. Computers, IEEE Transactions on, C-17(9):897-898, sep.1968.
- [2] Porsching.T.A. Jacobi and gauss-seidel methods for nonlinear network problems. 6(3),1969.
- [3] Richard.J.D.F.L. Burden. Numerical Analysis.8,2005.
- [4] Robert.W.H. Numerical Methods. Quantum,1975.
- [5] Saeed.N.A, Bhatti.A. Numerical analysis.Shahryar,2008.
- [6] Varga, R.S Matrix Iterative Analysis, Prentice Hall, Englewood Cliffs NJ, 1962.
- [7] Vatti.V.B.K., Numerical analysis: Iterative MethodsI.K. International Publishing House Pvt.Ltd. (2016).
- [8] Young, D.M., Linear Solution of Large Linear Systems, Academic Press, New York and London, 1971.



45.98

IMPACT FACTOR: 7.129

IMPACT FACTOR: 7.429

INTERNATIONAL JOURNAL FOR RESEARCH

IN APPLIED SCIENCE & ENGINEERING TECHNOLOGY

Call: 08813907089 🕓 (24*7 Support on Whatsapp)