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Abstract— The recent years as an important analytical technique, both due to the prevalence of graph data, and the usefulness 
of graph structures for exploiting intrinsic data characteristics. However, as graph data grows in scale, it becomes increasingly 
more challenging to identify clusters. The propose an efficient clustering algorithm for large scale data using spectral methods. 
Finding clusters in data is a challenging task when the clusters differ widely in shapes, sizes, and densities. The proposed system 
present a novel spectral algorithm with a similarity measure based on modified nearest neighbor graph. The resulting affinity 
matrix reflexes the true structure of data. Its eigenvectors, that do not change their sign, are used for clustering data. The 
algorithm requires only one parameter a number of nearest neighbors, which can be quite easily established. Its performance on 
both synthetic and real data sets is competitive to other solutions. 
Keywords— Spectral Cluster, KNN Graph, Affinity Matrix, Similarity Graph. 

I. INTRODUCTION 
Clustering has been extensively explored as one of the most fundamental techniques in machine learning and data mining. Various 
applications, such as image segmentation, gene expression analysis, document analysis, content based image retrieval, image 
annotation, similarity searches, have witnessed the practical effectiveness of clustering. 
Clustering is one of the most widely used techniques for exploratory data analysis, with applications ranging from statistics, 
computer science, and biology to social sciences or psychology. In virtually every scientific field dealing with empirical data, people 
attempt to get a first impression on their data by trying to identify groups of “similar behaviour” in their data. In this article we 
would like to introduce the reader to the family of spectral clustering algorithms. Compared to the “traditional algorithms” such as 
k-means or single linkage, spectral clustering has many fundamental advantages. Results obtained by spectral clustering often 
outperform the traditional approaches, spectral clustering is very simple to implement and can be solved efficiently by standard 
linear algebra methods.  
Spectral clustering (SC) has gradually become one of the most important clustering techniques and it shows more capability in 
partitioning data with more complicated structures compared to traditional clustering approaches. The underlying reason is that 
spectral clustering puts more efforts on mining the intrinsic data geometric structures. SC has been widely applied and shown their 
effectiveness in various real-world applications, such as image segmentation. The fundamental idea of spectral clustering is that it 
predicts cluster labels by exploiting the different similarity graphs of data points. Besides NCut and k-way NCut, a new SC 
algorithm, i.e., local learning based clustering (LLC), was developed according to the assumption that the cluster label of a data 
point can be determined by its neighbors, and a kernel regression model was used for label prediction. There are several popular 
constructions to transform a given set x1…,xn of data points with pairwise similarities sij or pairwise distances dij into a graph. 
When constructing similarity graphs the goal is to model the local neighborhood relationships between the data points. 
The main purpose of spectral clustering algorithm that can simultaneously address both of the above mentioned challenges for a 
variety of data sets. In propose algorithm the similarity between pairs of points is deduced from their neighborhoods. The use of 
similarity based on nearest neighbors approach removes, at least partially, problems with cluster varying densities and the 
unreliability of distance measure. Resulting adjacency matrix reflects true relationships between data points. Apart from only one 
parameter another advantage of the presented approach is that it incorporates a variety of recent and established ideas in a complete 
algorithm which is competitive to current solutions. 

II. RELATED WORK 
On the one hand, the intrinsic correlations among multiple clustering tasks on different yet related data, namely inter task correlation, 
are inevitably overlooked in traditional single-task clustering approaches, such as k-means and fuzzy c-means. On the other hand, 
although to some extent the inter task correlations are explored in previous works to enable multitask clustering, they have been 
consistently confronted with another serious challenge, i.e., no effective mechanism is afforded to deal with the out-of-sample data, 
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which is especially significant confronted with the current evolution of Web data. A promising way is to learn an explicit mapping 
function for predicting cluster labels for the out-of-sample data outside the training data. Several approaches have been proposed to 
provide an additional step to patch the problem, such as Nystrom method. However, such approaches normally separate learning 
cluster labels and learning mapping functions into two individual steps, thereby ignoring the relations between them. Moreover, 
while most of the previous works focus more on exploring the inter task relations, the within-task properties are not well considered. 
Although in traditional spectral clustering, by exploiting data local structures we may improve clustering performance to some 
extent, the task-specific property of the cluster indicator matrix requires more investigation. For instance, more discriminative 
information should be embedded in the cluster indicator matrix to make the clustering algorithms more effective and solid. Also, 
under some circumstances, the over fitting problems may occur and degrade the clustering performance due to the lack of 
appropriate processing. 
They study the spectral properties of an adjacency matrix A and its connection to the data generating distribution P. The authors 
investigate the case when the distribution P is a mixture of several dense components and each mixing component has enough 
separation from the others. In such a case A and L are (close to) block-diagonal matrices. Eigenvectors of such block-diagonal 
matrices keep the same structure. For example, the few top (i.e. corresponding to highest eigen values) eigenvectors of L can be 
shown to be constant on each cluster, assuming infinite separation between clusters. This property allows distinguishing the clusters 
by looking for data points corresponding to the same or similar values of the eigenvectors. The existing system develops theoretical 
results based on a radial similarity function with sufficiently fast tail decay. They prove that each of the top eigenvectors of A 
corresponds exactly to one of the separable mixture components. The eigenvectors of each component decay quickly to zero at the 
tail of its distribution if there is a good separation of components. At a given location xi in the high density area of a particular 
component, which is at the tails of other components, the eigenvectors from all other components should be close to zero. 
The existing system attempts to characterize eigenvectors of the laplacian on regular graphs. He suggests that the distribution of 
eigenvectors, except the first one, follows approximately a Gaussian distribution. There are also proofs that in general, top eigen 
values have associated eigenvectors which vary little between adjacent vertices. The two facts confirm the assumption that each 
cluster is reflected by at least one eigenvector with large components associated with the cluster vertices and almost zero values in 
the other case. Concept incorporated in the algorithm is so-called modularity, i.e. a quality function introduced by Newman for 
assessing a graph cut. According to its inventor a good division of a graph into partitions is not merely one in which there are few 
edges between groups; it is one in which there are fewer than expected edges between groups. The modularity Q is, up to a 
multiplicative constant, the number of edges falling within groups minus the expected number in an equivalent graph with edges 
placed at random, or in functional form. 
The general spectral clustering method was first shown to work on data represented in feature space. As we are mainly interested in 
graph data, we need one more step to construct an adjacency matrix which takes O(n2p) time where n and p represent number of 
data points and features respectively. Calculating the eigen decomposition of the corresponding laplacian matrix is the real 
computational bottleneck, requiring O(n3) time in the worst case. Therefore, applying spectral clustering for large scale data 
becomes impossible for many applications. In recent years, many works have been devoted to accelerating the spectral clustering 
algorithm. 
Similar to this idea, , all data points are collapsed into centroids through k-means or random projection trees so that eigen-
decomposition only needs to be applied on the centroids. The existing uses random projection in order to reduce data dimensionality. 
Random sampling has also been applied to reduce the size of data points within the eigen-decomposition step. In, landmark points 
are first selected among all the data points to serve as a codebook. After encoding all data points based on this codebook, 
acceleration can be achieved using the new representation. The resistance distance embedding, this employs a similar idea to 
spectral clustering and exhibits comparable clustering capability. 

III. PROPOSED ALGORITHM 

A. Similarity Graph 
Given a set of data points  and some notion of similarity  between all pairs of data points and , the intuitive goal 
of clustering is to divide the data points into several groups such that points in the same group are similar and points in different 
groups are dissimilar to each other. If we do not have more information than similarities between data points, a nice way of 
representing the data is in form of the similarity graph . Each vertex vi in this graph represents a data point xi. Two 
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vertices are connected if the similarity between the corresponding data points and , is positive or larger than a certain 
threshold, and the edge is weighted by  . The problem of clustering can now be reformulated using the similarity graph: we want 
to find a partition of the graph such that the edges between different groups have very low weights (which means that points in 
different clusters are dissimilar from each other) and the edges within a group have high weights which means that points within the 
same cluster are similar to each other. 

B. Graph Notation 

Let  be an undirected graph with vertex set . In the following we assume that the graph G is weighted, 
that is each edge between two vertices vi and vj carries a non-negative weight . The weighted adjacency matrix of the graph 
is the matrix . If   this means that the vertices  and  are not connected by an edge. As G is undirected 
we require . The degree of a vertex is defined as 

 
Note that, in fact, this sum only runs over all vertices adjacent to vi, as for all other vertices vj the weight  is 0. The degree matrix 
D is defined as the diagonal matrix with the degrees on the diagonal. Given a subset of vertices , we denote its 
complement by . We define the indicator vector as the vector with entries if and  

otherwise. For convenience we introduce the shorthand notation for the set of indices , in particular when dealing 
with a sum like . For two not necessarily disjoint sets  define            

 
Consider two different ways of measuring the “size” of a subset  : 

 

 

Intuitively, |A| measures the size of A by its number of vertices, while vol(A) measures the size of A by summing over the weights 
of all edges attached to vertices in A. A subset  of a graph is connected if any two vertices in A can be joined by a path such 
that all intermediate points also lie in A. A subset A is called a connected component if it is connected and if there are no 
connections between vertices in A and . The nonempty sets A1, . . . ,Ak form a partition of the graph if 

 

C. K-nearest neighbor graphs 
The goal is to connect vertex vi with vertex vj if vj is among the k-nearest neighbors of vi. However, this definition leads to a 
directed graph, as the neighborhood relationship is not symmetric. There are two ways of making this graph undirected. The first 
way is to simply ignore the directions of the edges, that is we connect vi and vj with an undirected edge if vi is among the k-nearest 
neighbors of vj or if vj is among the k-nearest neighbors of vi. The resulting graph is what is usually called the k-nearest neighbor 
graph. The second choice is to connect vertices vi and vj if both vi is among the k-nearest neighbors of vj and vj is among the k-
nearest neighbors of vi. The resulting graph is called the mutual k-nearest neighbor graph. In both cases, after connecting the 
appropriate vertices weight the edges by the similarity of their endpoints.  

IV. GRAPH LAPLACIAN 
The main tools for spectral clustering are graph Laplacian matrices. There exists a whole field dedicated to the study of those 
matrices, called spectral graph theory. In define different graph Laplacians and point out their most important properties. We will 
carefully distinguish between different variants of graph Laplacians. Note that in the literature there is no unique convention which 
matrix exactly is called “graph Laplacian”. Usually, every author just calls “his” matrix the graph Laplacian. Hence, a lot of care is 
needed when reading literature on graph Laplacians. In the following we always assume that G is an undirected, weighted graph 
with weight matrix W, where . When using eigenvectors of a matrix, we will not necessarily assume that they are 
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normalized. By “the first k eigenvectors” we refer to the eigenvectors corresponding to the k smallest eigen values. 
 

A. Unnormalized graph Laplacian 
The unnormalized graph Laplacian matrix is defined as 

 
An overview over many of its properties. The following proposition summarizes the most important facts needed for spectral 
clustering. the un-normalized graph Laplacian does not depend on the diagonal elements of the adjacency matrix W. Each adjacency 
matrix which coincides with W on all off-diagonal positions leads to the same un-normalized graph Laplacian L. In particular, self-
edges in a graph do not change the corresponding graph Laplacian. 

 
B. Normalized graph Laplacians 
There are two matrices which are called normalized graph Laplacians in the literature. Both matrices are closely related to each 
other and are defined as 

 
 

The first matrix by Lsym as it is a symmetric matrix, and the second one by Lrw as it is closely related to a random walk. In the 
following we summarize several properties of Lsym and Lrw. The standard reference for normalized graph Laplacians. 

V. SPECTRAL CLUSTERING ALGORITHMS 
They like to state the most common spectral clustering algorithms. For references and the history of spectral clustering we refer to 
Section 9. We assume that our data consists of n “points” x1, . . . , xn which can be arbitrary objects. We measure their pairwise 
similarities sij = s(xi, xj) by some similarity function which is symmetric and non-negative, and we denote the corresponding 
similarity matrix by S = (sij)i,j=1...n. 

Steps: Unnormalized spectral clustering 
Step 1: Input: Similarity matrix , number k of clusters to construct. 
Step 2: Construct a similarity graph by one . Let W be its weighted adjacency matrix. 
Step 3: Compute the unnormalized Laplacian L. 
Step 4: Compute the first k eigenvectors of L. 
Step 5: Let be the matrix containing the vectors  as columns. 
Step 6: For , let be the vector corresponding to the i-th row of U. 
Step 7: Cluster the points in with the k-means algorithm into clusters C1, . . . ,Ck. 
Step 8: Output: Clusters A1, . . . ,Ak with }. 
There are two different versions of normalized spectral clustering, depending which of the normalized graph Laplacian is used. 

VI. EXPERIMENTAL RESULTS 
Here have compared the performance of the KNN similarity algorithm (implemented in MATLAB) to three other methods: the Ng 
et al. algorithm, the Fischer et al. algorithm, and the multitask algorithm. 
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Fig.1. Compare Existing with proposed cluster accuracy 

The cluster accuracy showed in Fig. 1 show compare existing algorithm with proposed algorithm. Finaly proposed algorithm give 
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high accuracy compare with existing. 

 
Fig.2.  Compare Existing with proposed cluster runtime 

The cluster runtime showed in Fig. 1 show compare existing algorithm with proposed algorithm. Finally proposed algorithm give 
low time compare with existing. 

VII. CONCLUSION AND FUTURE WORK 
Spectral clustering can be implemented efficiently even for large data sets, as long as we make sure that the similarity graph is 
sparse. Once the similarity graph is chosen, we just have to solve a linear problem, and there are no issues of getting stuck in local 
minima or restarting the algorithm for several times with different initializations. Automatically detects the correct clusters in any 
given data set. But it can be considered as a powerful tool which can produce good results if applied with care. The proposed 
method can considerably decrease the necessary runtime while posting a tolerably small loss in accuracy. The future work 
observations show that our algorithm is a good candidate to apply it to image segmentation, that will be our next task. 
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