

IN APPLIED SCIENCE & ENGINEERING TECHNOLOGY

4 15 III Month of publication: March 2016 **Volume:** DOI:

www.ijraset.com

Call: 008813907089 E-mail ID: ijraset@gmail.com

International Journal for Research in Applied Science & Engineering

Technology (IJRASET)

Perfect Degree Support Product Graphs

Selvam Avadayappan¹, M. Bhuvaneshwari²

1,2Department of Mathematics, VHNSN College, Virudhunagar – 626001, India.

Abstract--For a graph G(V,E), the support s(v) of a vertex v is defined as the sum of degrees of its neighbours. A graph G is said to be balanced (highly unbalanced), if the support of all the vertices are same (distinct). Let k be any positive integer. A graph G is said to be a k – perfect degree support graph (k – pds graph) if for any vertex v in G, the ratio of its support and its degree is the constant k. A graph G is called a k – linear degree support graph (k – lds graph) if, for any two vertices in V with distinct degrees, the ratio of difference between their supports and the difference between their degrees is the constant k. The properties of k – lds graphs and k – pds graphs in various product graphs have been studied in this paper.

Keywords--Support, balanced graphs, highly unbalanced graphs, k – perfect degree support graphs, k – linear degree support graphs.

AMS Subject Classification code (2000): 05C (Primary)

I. INTRODUCTION

Throughout this paper, we consider only finite, simple, undirected graphs. For notations and terminology we follow [3]. A graph G is said to be r – *regular*, if every vertex of G has degree r. Let G₁ and G₂ be any two graphs. The graph G₁° G₂ obtained from one copy of G_1 and $|V(G_1)|$ copies of G_2 by joining each vertex in the ith copy of G_2 to the ith vertex of G_1 is called the *corona* of G_1 and G_2 . The *cartesian product* of G and H is denoted by G X H and their join is denoted by $G \vee H$. The *composition graph* of G_1 to G_2 is denoted by $G_1[G_2]$. The concepts of support, balanced graphs, highly unbalanced graphs have been introduced and studied by Selvam Avadayappan and G. Mahadevan [1]. The *support* $s(v)$ of a vertex v is the sum of degrees of its neighbours. That is, $s(v)$ = $\sum_{u \in N(v)} d(u)$. Note that the support of any vertex in an r – regular graph is r².

A graph G is said to be a *balanced graph,* if the support of every vertex in G is equal. It is easy to observe that the complete bipartite graphs $K_{m,n}$ and the regular graphs are balanced graphs. A graph G is said to be *highly unbalanced*, if distinct vertices of G have distinct supports. For example, a highly unbalanced graph is shown in Figure 1.

The following results have been proved in [1]:

Result 1 $\sum_{v \in V} s(v) = \sum_{v \in V} d(v)^2$.

Result 2 $s(v) = (n-1)^2$ for every $v \in G$ if and only if $G \cong K_n$.

Result 3 For any balanced graph G, $\delta(G) = 1$ if and only if $G \cong K_2$ or $K_{1,n}$.

Result 4 For any $n \ge 6$, there is a highly unbalanced graph of order n.

Consequently the concepts of k – perfect degree support graph and k – linear degree support graph have been defined in [2]. A graph G is said to be a k – *perfect degree support graph* (or simply a k – *pds graph*), if for any vertex v in G, $\frac{s(v)}{d(v)} = k$. For example, the graph shown in Figure 2 is a 3 – pds graph. In general, $C_n \circ K_2$ is a 3 – pds graph for any n > 2.

International Journal for Research in Applied Science & Engineering Technology (IJRASET)

A graph G is said to be a k – *linear degree support graph* (or simply a k – *lds graph*), if for any two vertices u and v in G with d(u) \neq $d(v)$ in G, $\frac{s(u)-s(v)}{d(u)-d(v)} = k$, for some integer k. Or equivalently, a graph in which for any vertex v, $s(v) = k d(v) + c$ for some constant c is called a k – lds graph. Note that in a k – lds graph, $s(u) - k d(u) = s(v) - k d(v)$. For example, the graph shown in Figure 3 is a 3 – lds graph.

In general any $k - pds$ graph is a $k - 1ds$ graph but not the converse. For example, the graph shown in Figure 3 is a $3 - 1ds$ graph but it is not a 3 – pds graph. In fact k – pds graphs are k – lds graphs with c = 0. All balanced graphs are 0 – lds graphs and any r – regular graphs are $r - pds$ graphs and hence $r - ds$ graphs.

Note that in a k – lds graph, two vertices of same degree have the same support. That is, $d(u) = d(v)$ implies that $s(u) = s(v)$. A few families of $k - pds$ graphs and $k - 1ds$ graphs with some constraints have been constructed in [2]. Also $k - pds$ trees have been characterized in [2].

In this paper, many new $k - \text{lds}$ and $k - \text{pds}$ graphs have been generated using various graph products.

 $k - pds$ and $k - ds$ product graphs

Regarding the properties of $k -$ lds and $k -$ pds graphs in product graphs, the following facts can be easily verified:

Fact 2.1 A disconnected graph is a $k -$ lds graph if and only if each of its components is a $k -$ lds graph.

Fact 2.2 Let G₁ be a k₁ – lds graph and G₂ be a k₂ – lds graph. Then G₁ \cup G₂ is a k – lds graph if and only if k₁ = k₂.

By a (p, q) – graph, we mean a graph with p vertices and q edges.

Fact 2.3 Let G_1 be a (n_1,m_1) - graph and G_2 be a (n_2,m_2) - graph. Then we can easily verify the following:

(i) For any $v \in V(G_1 \cup G_2)$, we have

 $d_{G_1 \cup G_2}(v) = d_{G_1}(v)$ and $S_{G_1 \cup G_2}(v) = S_{G_1}(v)$, if $v \in V(G_1)$ and

$$
d_{G_1 \cup G_2}(v) = d_{G_2}(v)
$$
 and $s_{G_1 \cup G_2}(v) = s_{G_2}(v)$, if $v \in V(G_2)$

IC Value: 13.98 ISSN: 2321-9653

International Journal for Research in Applied Science & Engineering Technology (IJRASET)

(ii) For any $v \in V(G_1 \vee G_2)$, we have

 $d_{G_1 \vee G_2}(v) = d_{G_1}(v) + n_2$; $s_{G_1 \vee G_2}(v) = s_{G_1}(v) + n_2 d_{G_1}(v) + 2m_2$, if $v \in V(G_1)$; $d_{G_1 \vee G_2}(v) = d_{G_2}(v) + n_1$; $s_{G_1 \vee G_2}(v) = s_{G_2}(v) +$ $n_1 d_{G_2}(v) + 2m_1$, if $v \in V(G_2)$

(iii) For any $(u, v) \in V(G_1 \times G_2)$, we have

 $d_{G_1 \times G_2}((u,v)) = d_{G_1}(u) + d_{G_2}(v)$ and

 $S_{G_1 \times G_2}((u,v)) = 2d_{G_1}(u) d_{G_2}(v) + S_{G_2}(v) + S_{G_1}(u),$

(iv) For any $(u, v) \in V(G_1[G_2])$, we have

$$
d_{G_1[a_2]}((u,v)) = n_2 d_{G_1}(u) + d_{G_2}(v).
$$

(v) Let $V(G_1) = \{v_1, v_2, \dots, v_{n_1}\}\$ and $V(G_2) = \{u_1, u_2, \dots, u_{n_2}\}\$. In $V(G_1 \circ G_2)$, let u_{ij} denote the vertex corresponding to u_j in the ith copy of G_2 . Then we have,

$$
d_{G_1^{\circ}G_2}(v_i) = d_{G_1}(v_i) + n_2 \text{ and } s_{G_1^{\circ}G_2}(v_i) = s_{G_1}(v_i) + n_2d_{G_1}(v) + 2m_2 + n_2,
$$

$$
d_{G_1^{\circ}G_2}(u_{ij}) = d_{G_2}(u_{ij}) + 1 \text{ and } s_{G_1^{\circ}G_2}(u_{ij}) = s_{G_2}(u_{ij}) + d_{G_2}(u_{ij}) + d_{G_1}(v_i) + n_2.
$$

Now let us prove some results on $k - \text{lds}$ and $k - \text{pds}$ product graphs.

■

Theorem 2.4 If G is a k – lds graph of order n, then $G \vee G$ is a ($k + n$) – lds graph.

Proof Let G be any k – dsl graph of order n. Then for any two vertices v_i and v_j of distinct degrees, $\frac{s_G(v_i)-s_G(v_j)}{d_G(w_i)-d_G(w_j)}$ $\frac{G_G(v_1) - G_G(v_1)}{G_G(v_1) - G_G(v_1)} = k$. Now consider G \vee G. Then the degree of every vertex gets increased by n and the support of any vertex gets increased by its degree times n. For any two vertices of distinct degrees, $\frac{s_{\text{G/G}}(v_i)-s_{\text{G/G}}(v_j)}{s_{\text{G/G}}(v_j)}$ $\frac{s_{G\vee G}(v_i)-s_{G\vee G}(v_j)}{d_{G\vee G}(v_i)-d_{G\vee G}(v_j)} = \frac{s_G(v_i)+n\,d_G(v_i)-s_G(v_j)-n\,d_G(v_j)}{d_G(v_i)-d_G(v_j)}$ $\frac{\partial G(v_1) - \partial G(v_1)}{\partial G(v_1) - dG(v_1)} = k + n$. Hence, $G \vee G$ is a $(k + n) -$ lds graph. For example, a 1 – lds graph P₄ and the corresponding 5 – lds graph P₄ \vee P₄ are shown in Figure 3.

Theorem 2.5 Let G be any (n, m) – graph. If $G \vee K_1$ is a k – pds graph, then $\frac{2m}{n} = k - 1$.

Proof Let G be a graph with n vertices and m edges such that $G \vee K_1$ is a k – pds graph. Let v be the vertex of K_1 . Then clearly v is a full vertex with support $S_{G \vee K_1}(v) = \frac{\sum_{u \in V(G)} d_{G \vee K_1}(u)}{n}$ $\frac{d_{G\vee K_1}(u)}{n} = \frac{\sum_{u\in V(G)} d_G(u)+n}{n}$ $\frac{dG(u)+n}{n} = \frac{2m+n}{n}$ $\frac{n+n}{n} = k$. Hence the proof.

Theorem 2.6 There does not exist a k – pds graph G such that $G \vee K_1$ is also k – pds.

Proof Suppose G is a k – pds graph such that $G \vee K_1$ is a k – pds graph. Then for any vertex v in G, $S_G(v) / d_G(v) = S_{G \vee K_1}(v)$

IC Value: 13.98 ISSN: 2321-9653

■

International Journal for Research in Applied Science & Engineering Technology (IJRASET)

 $d_{G \vee K_1}(v) = k$. Now by using Fact 5.8 (ii), $\frac{s_G(v) + d_G(v) + n}{d_G(v) + 1} = k$. That is, $\frac{kd_G(v) + d_G(v) + n}{d_G(v) + 1} = k$, which implies $d_G(v) = k - n$. Since $G \vee K_1$ is connected, we have k > n. In other words, $s_G(v) > n d_G(v)$ which is impossible. Therefore such a graph G does not exist \blacksquare

Theorem 2.7 For an r – regular graph G of order n_1 and a k – regular graph H of order n_2 , G ∘ H is a $(r + k)$ – pds graph.

Proof Let G and H be r – regular and k – regular graphs respectively. Then by Fact 2.3 (v), G ∘ H is a biregular graph. In particular, $S_{G^{\circ}H}(v) = r + n_2$; $S_{G^{\circ}H}(v) = r^2 + n_2(r + k + 1)$, for any $v \in V(G)$ and $d_{G^{\circ}H}(u) = k + 1$; $S_{G^{\circ}H}(u) = k^2 + k + r + n_2$, for all $u \in V(G)$ V(H). Therefore we get $\frac{s_{G^{\circ}H}(v) - s_{G^{\circ}H}(u)}{d_{G^{\circ}H}(v) - d_{G^{\circ}H}(u)} = r + k$. Hence G ∘ H is a $(r + k) -$ pds graph. For example, K_{3,3} ∘ K₂ which is a 5 – pds graph is shown in Figure 4.

Figure 4

Theorem 2.8 For any two regular graphs G and H, $G[H]$ is a k – pds graph.

Proof Suppose G is an r – regular graph of order n₁ and H is a k – regular graph of order n₂. Then it is easy to note that G[H] is a (n₂r $+ k$) – regular graph and hence a (n₂r + k) – pds graph. For example, C₄[K₂] which is a 5 – pds graph is shown in Figure 5.

Theorem 2.9 If G is a k – lds graph, then $G \times H$ is a ($k + 2r$) – lds graph, for any r – regular graph H.

Proof Let G be any k – lds graph and H be any r – regular graph. Then $\frac{s_G(v_i) - s_G(v_j)}{4(G_i) - 4(G_i)}$ $rac{\partial G(v_1) - \partial G(v_1)}{\partial G(v_1) - \partial G(v_1)} = k$, for any two vertices v_i and v_j of distinct degrees in G and $s_H(w) = r^2$ for any vertex w in H. Using Fact 2.3 (iii), for any two vertices in G \times H, we have $s_{G\times G}(v_i, w_k) - s_{G\times G}$

International Journal for Research in Applied Science & Engineering Technology (IJRASET)

 $(v_j, w_l) = (k + 2r) \{d_{G \times G}(v_i, w_k) - d_{G \times G}(v_j, w_l)\}$, which implies that $G \times H$ is a $(k + 2r)$ – graph.

For example, a 1 – lds graph P_4 and the corresponding 5 – lds graph $P_4 \times C_4$ are shown in Figure 6.

■

REFERENCES

- [1] Selvam Avadayappan and G. Mahadevan, Highly unbalanced graphs, ANJAC Journal of Sciences, 2(1), 23 27, 2003.
- [2] Selvam Avadayappan and M. Bhuvaneshwari, Perfect degree support graphs, (Preprint).
- [3] R.Balakrishnan and K. Ranganathan, A Text Book of graph Theory, Springer-Verlag, New York, Inc(1999).

45.98

IMPACT FACTOR: 7.129

INTERNATIONAL JOURNAL FOR RESEARCH

IN APPLIED SCIENCE & ENGINEERING TECHNOLOGY

Call: 08813907089 (24*7 Support on Whatsapp)