
 

2 V May 2014



www.ijraset.com                                                                                                                                    Vol. 2 Issue V, May 2014 
                                                                                                                                                                    ISSN: 2321-9653 

I N T E R N A T I O N A L J O U R N A L F O R R E S E A R C H I N A P P L I E D S C I  E N C E 
AN D E N G I N E E R I N  G T E C H N O L O G Y (I J  R A S E T) 

 
 

Page 
151 

 

  

Soft-checkpoint based Checkpointing 
Algorithm for Mobile Distributed Systems 

Pradeep Kumar Sharma1, Parveen Kumar2, Surender Jangra3 
1Research Scholar, Deptt. of Computer Sci., Mewar University, Chittorgarh(Raj.) 

2 Deptt. of CSE, Bharat Institute of Engg. & Tech. Meerut(UP) 
3 Deptt. of IT Engg. HCTM Technical Campus, Kaithal(HRY) 

 

Abstract-- There are number of issues needs to handle in mobile computing systems like mobility, lack of stable storage on 
mobile nodes, disconnections, limited battery power and high failure rate of mobile nodes which causes loss of computation. 
Checkpointing is an attractive approach to introduce fault tolerance in mobile distributed systems transparently. A 
checkpoint is a local state of a process saved on the stable storage. However, a mobile consumer device is not considered to 
have sufficiently large and stable storage to store its checkpoint data. Therefore, a remote checkpoint technique is preferred 
in which the checkpoint data of a mobile device is kept in a remote checkpoint server instead of the mobile device. “Soft 
checkpoint” is neither a tentative checkpoint nor a permanent checkpoint, which can be saved anywhere, e.g., the main 
memory or local disk of MHs. Before failure these soft checkpointsare converted to hard checkpoints and are sent to MSSs 
stable storage. In this way, taking a soft-checkpoint avoids the overhead of transferring large amounts of data to the stable 
storage atMSSs over the wireless network and minimizes power consumption. 

Keywords- Checkpointing, Global State, Distributed System, Mobile Host, Mobile Support System 

I. INTRODUCTION 
The market of mobile handheld devices and mobile 

application is growing rapidly. Mobile terminal are become 
more capable of running rather complex application due to the 
rapid process of hardware and telecommunication technology. 
Property, such as portability and ability to connect to network 
in different places, made mobile computing possible. Mobile 
computing is the performance of computing tasks whiles the 
user in on the move, or visiting place other than their usual 
environment. In the case of mobile computing a user who is 
away from his “home” environment can still get access to 
different resources that are too computing or data intensive to 
reside on the mobile terminal [4]. Mobile distributed systems 
are based on wireless networks that are known to suffer from 
low bandwidth, low reliability, and unexpected disconnection 
[4]. 

In MDS multiple MHs are connected with their local MSS 
through the wireless links. A process is considering as a MH 
without stable storage. During checkpointing, an MH has to 
transfer a large amount of checkpointed data (like variables, 
control information, register value and environments etc.) to 
its local MSS over the wireless network. So, checkpointing 
consumes scares resources to transfer data store data on stable 
storage. If even a single MH fails to take a checkpoint, all the 

checkpoints which are taken related to current initiation must 
be discarded. So, it increases the overhead. 

Mostly coordinated checkpointing approach follows two-
phase commit structure. In the first phase, processes take 
tentative checkpoints and in the second phase, these tentative 
checkpoints are made permanent. If a single process fails to 
take its checkpoint or reply negatively, the whole 
checkpointing effort of the particular initiation become wasted 
and processes rollback to previous CGS. Checkpointing takes 
some time to operate as all the computed data and related 
information are transferred and stored on stable storage which 
takes some time to save, transferring and also consume power. 

In mobile distributed systems (MDSs) processes are 
considering as many MHs with low power, memory and 
without stable storage. There is wireless link between MH and 
MSS. So during checkpointing in MDSs, an MH has to 
transfer a large amount of checkpoint data to its local MSS 
over the wireless network. Since MHs are prone to failure and 
a single MH failure made the checkpoints efforts 
unsuccessful. After a single failure all the related processes 
rollback to its previous consistent state. Therefore, such 
unsuccessful efforts consume a lot of time, waste scarce 
resources of mobile systems likes’ computation power, 
bandwidth, time, energy and it is performance bottleneck. 



www.ijraset.com                                                                                                                                    Vol. 2 Issue V, May 2014 
                                                                                                                                                                    ISSN: 2321-9653 

I N T E R N A T I O N A L J O U R N A L F O R R E S E A R C H I N A P P L I E D S C I  E N C E 
AN D E N G I N E E R I N  G T E C H N O L O G Y (I J  R A S E T) 

 
 

Page 
152 

 

  

A. Why Soft-checkpointing Approach 
In this section we compare our soft checkpoint (SC) based 

approach with the hard Checkpointing (HC) approach in 
different perspectives.  

Checkpoint Latency: Checkpointing latency is the time 
needed to save the checkpoint. It is observed that there is a 
big difference between the latency in soft and hard 
checkpointing based approach. This is due to fact that soft 
checkpoint based approach uses fast volatile memory and not 
have any transmission cost.  

Transmission Cost: Soft checkpoint based approach have not 
any transmission cost as the checkpoint are stored locally on 
volatile memory, instead through wireless link on stable 
storage of MSS. 

Recovery Time: It is observed that recovery time in soft 
checkpoint based approach is much less if the failure occurs 
before converting the SC into HC and it is comparable in the 
other case. 

B. Soft vs Hard Checkpointing  
As shown in Table 1, soft-checkpoint based approach has 

low latency, cost and overheads compared to hard approach 
but it is assumed that soft checkpoint approach is very less 
reliable. In our approach to increase the reliability of 
approach, on the time of failure, disconnections or handoffs 
we transfer the data on the stable storage of MSS.  

II. RELATED WORK  AND PROBLEM FORMULATION 

A. Related Work 
Most of the coordinated checkpointing protocols [4], [6] 

take forced or mutable checkpoints to achieve the goal of non-
blocking and minimum process. Many of these checkpoints 
may not become the part of CGS and such types of 
checkpoints are treated as useless. Useless checkpoints are not 
desirable because they do not contribute to the recovery of the 
system from failure but they consume resources and increase 
the performance overheads. 

Major objective in the designing of a checkpointing 
protocol is to make it non-blocking and forces a minimal 
number of processes to take their local checkpoints and 
reduces the rollback overhead.  

Cao and Singhal [6] achieved non-intrusiveness in the 
minimum-process protocol by introducing the concept of 
mutable checkpoints. If any process sends a computation 
message to another process after receiving the checkpoint 
request, the receiving process first take the mutable 
checkpoint first and process the message. Later, this mutable  
 

checkpoint converted to tentative if it receives checkpoint 
request related to the current initiation; otherwise it become 
the useless checkpoint. Besides as in [4] and [6], our 
checkpointing algorithm requires minimum checkpoints and 
reduces useless checkpoints. 

The most commonly used technique to prevent complete 
loss of computation upon failure is Coordinated checkpointing 
[2], [4], [5], [6], [13]. In this approach, the state of each 
process in the system is periodically saved on the stable 
storage, which is called a checkpoint of the process. To 
recover from a failure, the system restarts its execution from a 
previous consistent global checkpoint saved on the stable 
storage. In order to record a consistent global checkpoint, 
processes must synchronize their checkpointing activities. In 
other words, when a process takes a checkpoint, it asks to all 
relevant processes by sending checkpoint requests to take 
checkpoints. Therefore, coordinated checkpointing suffers 
from high overhead. The protocol presented in this paper 
shows performance improvement over the work reported in 
[4], [5], [6], [7] & [8]. The protocol designed by Acharya and 

 
TABLE 1 HARD VS SOFT CHECKPOINTING 

Parameter Hard-based Soft-based 

Checkpoint 
Latency 

High Low 

Transmission Cost High Low 

Recovery Time High Low 

CPU Overhead High  High 

Main Memory 
Requirement 

Low  High 

Reliability High Low 

Efficiency Low  High 

Portability High Low 

Additional 
Hardware 

Not required Additional 
processors 

Suitability For Large 
Systems 

For Small 
Systems 

Power 
Consumption 

High Low 



www.ijraset.com                                                                                                                                    Vol. 2 Issue V, May 2014 
                                                                                                                                                                    ISSN: 2321-9653 

I N T E R N A T I O N A L J O U R N A L F O R R E S E A R C H I N A P P L I E D S C I  E N C E 
AN D E N G I N E E R I N  G T E C H N O L O G Y (I J  R A S E T) 

 
 

Page 
153 

 

  

Badrinath [1] requires to create a new checkpoint whenever 
they receive a message after sending a message. Processes 
also have to create a checkpoint prior to disconnection. 
Pardhan et al. [7] proposed two uncoordinated protocols. The 
first protocol creates a checkpoint everytime when a process 
receives a message. The second protocol creates checkpoints 
periodically and logs all messages received. P. Kumar and R. 
Garg [11] proposed a hybrid scheme, wherein an all process 
checkpoint is enforced after executing minimum-process 
algorithm for a fixed number of times. In the first phase, the 
MHs in the minimum set are required to take soft checkpoint 
only. Soft Checkpoint proposed by them is stored on the disk 
of the MH and is similar to mutable checkpoint [8]. In the 
minimum process algorithm, a process takes its forced 
checkpoint only if it is having a good probability of getting the 
checkpoint request; otherwise, it buffers the received 
messages. 

S. Kumar et. all [12] proposed a soft checkpoint approach 
in which aprocess in minset [ ] takes a soft checkpoint first 
andthen soft checkpoint will be discarded, if it receives 
aborted message from the initiator. These soft checkpoints are 
saved on main memory of the mobile hosts [MHs], and then 
the soft checkpoint will be saved on the stable storage of MSS 
at a later time only if they receive the hard checkpoint request 
from the initiator. Their scheme requires low battery power of 
MHs, low checkpoint latency, low transmission cost, and low 
recovery time due to reduced disk accessed of MSS by the 
MHs. As soft checkpoint approach is less reliable, to make it 
reliable they transfer the soft checkpoint on stable storage The 
protocols proposed in [4], [5] & [8] follow two-phase commit 
distributed structure. In the first phase processes take 
temporary checkpoints when they receive the checkpoint 
request. These tentative checkpoints are stored in stable 
storage of MSS. In the second phase, if an MSS learns that all 
the processes have taken the temporary checkpoints 
successfully, initiator MSS sends commit message to all the 
participating nodes. In these checkpoints an MH has to 
transfer a large amount of data to its local MSS over its 
wireless network which results in higher checkpoint latency 
and recovery time as transferring such temporary checkpoints 
on stable storage may waste a large amount of computation 
power, bandwidth, energy and time. The protocol proposed by 
us creates a checkpoint whenever the local timer expires, and 
it only logs the unacknowledged messages at checkpoint time. 
Our protocol uses two types of checkpoints to  recover from 
failure. The two previous protocols proposed in [6] and [7] 
always assume hard failures. 

B. Problem Formulation 
The objective of the present work is to design a 

checkpointing approach that is suitable for mobile computing 

environment. Checkpointing and recovery protocol for mobile 
environment demands for efficient use of the limited resources 
of mobile environment i.e. wireless bandwidth, battery power 
and memory etc. Consider a mobile environment, in which a 
MSS has 1000 MHs in their minimum set. During the first 
phase 999 MHs take their temporary checkpoints successfully 
and one MH fails to take checkpoint. In such case, the 
checkpointing process must be aborted and MHs discard their 
temporary checkpoint. Observe that taking a temporary 
checkpoint in the stable storage and later discard it, affects the 
bandwidth utilization and waste the MHs limited battery 
power. 

III. PROPOSED SOFT-CHECKPOINT BASED ALGORITHM 

A. Architecture 
Our checkpointing algorithm has two types of checkpoints: 

permanent and soft checkpoint. Permanent checkpoints are 
same as in [4], [5], [6] and saved on stable storage of MSS. 
Soft checkpoint are like forced checkpoint and  need not to be 
saved on stable storage and can be stored anywhere, even in 
the main memory of MHs. This approach assumes that each 
site has its own local log, sufficient volatile memory and can 
therefore rollback or commit the transaction reliably. This soft 
checkpoints based approach [Fig. 1] is suitable for MDSs as in 
case of single MH failure processes rollback to previous 
consistent state without incurring extra cost as soft 
checkpoints are stored on local MHs and have not any 
transferring cost.  

 

Fig. 1 Soft-checkpoint based architecture 
These soft checkpoints are transferred to stable disk of 

MSS only after receiving the commit. On receiving the abort 
message from the initiator or identifying the participated node 
failure these soft checkpoints are discarded locally. Hence, 



www.ijraset.com                                                                                                                                    Vol. 2 Issue V, May 2014 
                                                                                                                                                                    ISSN: 2321-9653 

I N T E R N A T I O N A L J O U R N A L F O R R E S E A R C H I N A P P L I E D S C I  E N C E 
AN D E N G I N E E R I N  G T E C H N O L O G Y (I J  R A S E T) 

 
 

Page 
154 

 

  

during failure our soft checkpoint has much less overhead as 
compare to tentative.  

B. Basic Idea 
When an initiator process Pi, initiate the checkpointing 

process, it takes its local checkpoint and sends soft checkpoint 
request piggybacked with the tuple (Pid,icsn) of initiator to all 
directly and transitively dependent processes to take their soft 
checkpoints; and wait for response. After receiving the 
checkpoint request from the initiator process it depends upon 
the processes they take their soft checkpoint or not. If one 
process fails to respond within a timeout period, then the 
initiator broadcast ABORT message. After receiving ABORT, 
processes discard their checkpoints taken related to current CI. 
On the other hand if initiator knows that all processes take 
their soft checkpoint successfully, then it forwards COMMIT 
message to all related processes and processes converts their 
soft checkpoints into permanent checkpoints after receiving 
the COMMIT message.  

C. System Model 
A MDS is a distributed system where some of the processes 

are running on mobile hosts (MHs) [3]. It consists of Static 

Hosts (SHs), Mobile Hosts (MHs) and the Mobile Support 
Stations (MSSs). So, the MDS can be considered as consisting 
of “n” MHs and “m” MSSs. The static network provides 
reliable, sequenced delivery of messages between any two 
MSSs, with arbitrary message latency. Similarly, the wireless 
network within a cell ensures FIFO delivery of messages 
between an MSS and a local MH. The links are FIFO in 
nature. An MH communicates with other nodes of system via 
special nodes called mobile support station (MSS).An MH can 
directly communicate with an MSS only if the MH is 
physically located within the cell serviced by MSS. A static 
node that has no support to MH can be considered as an MSS 
with no MH. A cell is a geographical area around an MSS in 
which it can support an MH .An MH can change its 
geographical position freely from one cell to another cell or 
even area covered by no cell. At any given instant of time an 
MH may logically belong to only one cell; its current cell 
defines the MH’s location and the MH is considered local to 
MSS providing wireless coverage in the cell. If an MH does 
not leave the cell, then every message sent to it from local 
MSS would receive in sequence in which they are sent.  

 

D. Data Structure 
Each process Pi maintains the following data structures:  

Pid Initiator process identification; 

M m is any process to process computation message; 
csni[] An array of checkpoint sequence numbers maintained by each process Pi. It is initially set to zero and incremented each time 

takes a new checkpoint by one. 

csni[j] Checkpoint sequence number (csn) of Pj currently known by the process Pi. 

weighti Weight is used to detect the termination of the checkpoint algorithm as in [4], [5], [6]. Initiator process 
sends the portion of weight with the checkpoint request and receiving process reply with weight to the 
initiator. When initiator process found weight =1, it sends the commit () message to all processes belongs 
to the minimum set 

triggeri A set of 2-tuple (Pid, icsn) maintained by each process Pi, where Pid indicates the initiator process 
identifier of the checkpointing initiator and icsn indicates the csn at process Pid corresponding to that 
checkpoint event. 

ddvi[] A bit vector of size n; ddvi[j] =1 implies Pi is directly dependent upon Pj for the current CI; ddvi[j] is set to 
‘1’ only if  Pi processes m received  from Pj s.t. m.own_csn � csni[j]; otherwise ddvi[j]=0. m.own_csn is 
the own_csn at  Pj at the time of sending m and csni[j] is Pj’s recent permanent checkpoint’s csn; initially, 
�k, ddvi[k]=0 and  ddvi[i]=1; for MHi it is kept at local MSS; 

c_state A flag set to “1” when a process Pi takes soft checkpoint after receiving the checkpoint request. 



www.ijraset.com                                                                                                                                    Vol. 2 Issue V, May 2014 
                                                                                                                                                                    ISSN: 2321-9653 

I N T E R N A T I O N A L J O U R N A L F O R R E S E A R C H I N A P P L I E D S C I  E N C E 
AN D E N G I N E E R I N  G T E C H N O L O G Y (I J  R A S E T) 

 
 

Page 
155 

 

  

minseti[]   In order to maintain minimal dependency information among processes we use the similar approach as [6] 
where Boolean vector Ri of n bits. ddvi[i] =1 or ddvi[j], if j≠1. A process Pi sends an execution message m 
piggybacked with ddvi to Pj. Pj updates its own ddvj  after receiving m as follows: ddvj[k]= 1 or ddvi[k] 
m.ddv[k], 1≤k≤n and v is the bitwise inclusive OR operator. Hence if Pi depends on Pk before sending m, 
Pj also become dependent transitively on Pk after receiving m. A bit vector of size n which is compute on 
the MSSini; if Pi initiate its(x+1)th checkpoint then the set of processes on which Pi depends(directly or 
transitively) in its xth checkpoint interval is minimum set. MSSini computes minset[](subset of minimum 
set) on the basic of ddv[] maintained at MSSini. Initially minset[]= ddvini[]. So minset[k] =1 implies Pk 
belongs to the minimum set and it is directly or transitively dependent on initiator process Pini . 

Uminseti It is an updated version of minset at initiator process Pi.  As our process is non-blocking and dependent 
process direct acknowledge to the initiator process. If a new dependency occurs due to non-blocking 
nature and this new process Pk directly reply to the initiator process then initiator process adds this new 
process in to minset. So now Uminset=minset U Pk. 

SC Each process Pi takes soft checkpoint when it receives the checkpoint request from the initiator or if 
receives the triggering computation message and icsni[j] < m.csnj. 

PC Permanent checkpoint (PC) is stored on the stable disk of the local MSS. Our soft checkpoint is converted 
into permanent on receiving the commit request, during node failure and disconnections.  

E. The Proposed Algorithm 

(a) Action on the initiator Pj:  Send checkpoint request to the local MSS. 

(b) Action at the MSSini 
1. if g_chkpt= =0 
     {set g_chkpt= = 1; 
       set c_state= =1; csnj++; 
       set init_trigger(pid,icsn); 
       check minsetj[] ;  
       Send soft chk_req to all the processes in minset i.e minseti[k] = =1 for i<=k<=n with (minsetj, NULL, Pj, init_trigger,  
       weight); 

        } 
    else 

     {Ignore request; as some global chkpting initiation is already going on ;} 
2. Wait for reply ; 
3. On receiving Reply from any process Pi 
       Receive c_rply(Pi, reply, recv-weight) 
       if (timeout)OR (Negative ACK ) 
          {Broadcast ABORT and exit ;} 
       else 
          {weight: =weight + recv_weight; 
            Uminset: = minset U Pj } 
4. if weight=1 

    Sends commit message to all process Pk such that Pk belongs to Uminset[]; 

(c) Action taken when any Pi sends a computation message to process Pj 
if  SC= =T 

         {Send(Pi, msg, Ri, csni[i], trigger); 
else 
    Send (Pi,msg, Ri, csni[i], NULL);} 



www.ijraset.com                                                                                                                                    Vol. 2 Issue V, May 2014 
                                                                                                                                                                    ISSN: 2321-9653 

I N T E R N A T I O N A L J O U R N A L F O R R E S E A R C H I N A P P L I E D S C I  E N C E 
AN D E N G I N E E R I N  G T E C H N O L O G Y (I J  R A S E T) 

 
 

Page 
156 

 

  

(d) Action taken when other processes, Pi receives a chkpt reqst from the initiator Pj: 
   Pi receives a checkpoint request;  
   if SC= = F 

  Take checkpoint; set SC= = T, Increment csni; set own_trigger= = init_trigger; 
 if (DVi[]= null) V DVi[] = minset[] ; 

Send c_rply(Pi, reply, recv_weight, null ) to MSSini; 
Continue computation; 

 else  
Sends checkpoint request to some process Pk , where k s.t. ddvj[k]= =1 ^ minset[k]= =0) with some portion of weight 
and init_trigger; 
Send c_reply(Pi,reply, remaining weight, new_DV[Pk]) to the initiator; 

   else // SC= = T // it has already participated  in CI       
      Ignore the checkpoint request; 

Continue computation; 

(e) Actions for process Pi, on receiving a computation message from Pj: When process Pi receives the init_trigger with the 
computation message, it understands that process Pj sends the computation message after taking soft checkpoint (SC). On the 
other hand process only sends the message sequence number (csn) of the message.  

if m.trigger != null 

 if (csni[pid] = m.init_csn) // Pi already participated in CI     
{Receive message m;  
Update csni[j];  
Continue normal operation; 
} 

else if (csni[j] < m.csnj) 
   {Take soft checkpoint (SC); 

          Receive message m; 
          Update csni[j]; 
          Continue normal operation; 
          } 

else 
   {Receive message m; 

          Update csni[j];} 

(f) Process takes the soft checkpoint on happening of any below condition first: 
 On the receipt of Take soft checkpoint request from initiator; 
 Upon receiving the computation message, if (m.csn > csni[k]); 
 If local time to take soft checkpoint expires   

(g) Processes converts soft checkpoint in to permanent: 
 On receipt of the commit message from the initiator; 
 At the time of node disconnection and Handoff: in MDS, a MH may get disconnected voluntarily and non-voluntary. In 

voluntarily disconnections, MH transfer its soft checkpoint in to the stable storage of MSS before disconnection. We call 
this disconnected checkpoint. In such case the MSS who receive the disconnected checkpoint, coordinate on the behalf of 
disconnected MH. Non-voluntary disconnections are treated as fault [51]. 

 On the basic of maxsoft: The number of SC stored per hard HC is called maxsoft, and it depends on the quality of service 
of current network [9].  
 

(h) Upon receiving COMMIT message 
 Make soft checkpoint permanent; 



www.ijraset.com                                                                                                                                    Vol. 2 Issue V, May 2014 
                                                                                                                                                                    ISSN: 2321-9653 

I N T E R N A T I O N A L J O U R N A L F O R R E S E A R C H I N A P P L I E D S C I  E N C E 
AN D E N G I N E E R I N  G T E C H N O L O G Y (I J  R A S E T) 

 
 

Page 
157 

 

  

 Increment own csn; 

(i) Upon receiving ABORT message 
 Discard soft checkpoint taken related to current initiation from the volatile memory; 
 Roll back to previous permanent checkpoint;  

F. Working Example 
Consider a distributed system with n processes. P0, P1, P2, P3 

and P4. Each process Pi in the system maintains ddvi vector of 
size n which is initially set to zero and an entry in ddvi[j]=1 
when Pi receives a commutation message during current 
checkpoint interval(CI). A process Pi sends a computation 
message m with ddvi [] to Pj. Pj updates its own ddvj after 
receiving m as follows: ddvj[k] = 1 or ddvi[k] m.ddv[k], 1 ≤ k 
≤ n and   is the bitwise inclusive OR operator. Hence if Pi 
depends on Pk before sending m, Pj also become dependent 
transitively on Pk after receiving m. Also each process Pi 
piggybacks its icsn with only every first outgoing computation 
message to process Pj after taking checkpoint. Each process Pi 
needs to take soft checkpoint if any of the following events 
occurs: 

1) if it receives checkpoint request from the initiator 
2) if it receives a piggybacks message and with higher csn  

In our proposed algorithm we assume triggering and non-
triggering computation message.  A computation message 
which are piggybacks with trigger tuple are called triggering 
message which is sent after taking a soft checkpoint. We 
explain the behavior of our algorithm with the help of 
following example by considering the five processes from P1 
to P5 in a distributed system [Fig. 2]. We assume that process 
P2 initiates the checkpointing process. The ddv[] vector are 
maintained as follows: When process P4 sends a message m4 
to P3, it appends ddv4[00001] to the message. When P3 
receives message m4, it extracts the boolean vector ddv4 [] 
from the message and updates its ddv3 by taking the OR of 
ddv3 [00010] and ddv4 [00001].Now the updated ddv3 become 
[00011] and sends this updated vector by appending with the 
message m2. Similarly by updating ddv2 [] on the receipt of 
message m2 at process, ddv2 [] become [00111]. In same way 
P1 updates its ddv1 [01000] to [011000] on receiving the 
message m1 from process P2 and sends this updated ddv2 [] 
vector with message m3. At last after receiving the message 
m3 from P1 the ddv2 become [011111] which shows that 
process P1,P3, P4 are directly or transitively dependent on P2. 
We make the observations related to our algorithm (a) Process 
P1, P3 and P4 are the part of minimum set and receives the 
checkpointing request from the initiator process P2 (b) 
Checkpoint C0,1 and C2,1 are the permanent checkpoint and 
stored at stable storage of MSS and non-triggering message 

are sent after these  (c) Checkpoints C4,1, C3,1, and C1,1 are the 
soft checkpoint, and triggering computation message are sent 
after these. So at the time of initiation, P2 take its own 
permanent checkpoint and sends checkpoint request to P1, P3 
and P4, increment its csn C2,0 to C2,1 and wait for reply or 
acknowledgement.  

 

Fig. 2 An example of proposed Soft checkpointing approach 

When P2’s request reaches P4, it takes soft checkpoint C4,1 
and sends triggering computation message(as it is sent after 
taking the soft checkpoint) m5 to P3. Process P3 receives 
triggering computation message before it receives the 
checkpoint request message from the initiator, it first 
compares (csn3 [Pid] ≠  m.Pid)    and concludes that P3 does not 
participate in current checkpointing initiation and asked to 
participate. Secondly it takes the soft checkpoint C3,1 before 
processing the message m3 as the csn3[4] which is 1, smaller 
than P4’s current csn4=2 received with message m5.  

Similarly process P1 takes its soft checkpoint C1,1 after 
receiving the triggering computation message from P3. Later 
when P1 and P3 receive the checkpoint request from the 
initiator P2, these processes ignore the checkpoint request as 
they have already participated in current initiations. Process P0 
which are not the part of minimum set, takes its permanent 
checkpoint C0,1 independently and sends the non-triggering 
computation message m6 to process P1 by appending C0,1. 
After receiving non-triggering computation message m6 
process P1 observe that C0,1 is not soft checkpoint; it only 



www.ijraset.com                                                                                                                                    Vol. 2 Issue V, May 2014 
                                                                                                                                                                    ISSN: 2321-9653 

I N T E R N A T I O N A L J O U R N A L F O R R E S E A R C H I N A P P L I E D S C I  E N C E 
AN D E N G I N E E R I N  G T E C H N O L O G Y (I J  R A S E T) 

 
 

Page 
158 

 

  

update the csn1[0] to 1, receives the message and conclude 
that new checkpoint is not necessary.  

At last when initiator processes P2 receives reply within 
time from all its dependent processes i.e., weight become 1, it 
sends COMMIT request to all the participated processes to 
convert their soft checkpoints into permanent one. On the 
other hand if time out or any one the participated process reply 
negatively, then initiator P2 sends the ABORT message to all 
the participating process. After receiving the ABORT message, 
processes discard their soft checkpoint taken related to current 
CI. 

IV. COMPARATIVE ANALYSIS AND CHARACTERISTICS 

a) Blocking Time: Proposed checkpointing algorithm is non-
blocking. 

b) Number of Coordinated Messages: In the algorithm, before 
failure only coordinated message soft checkpoint request are 
transmitted through wireless link from the MSS to MHs. The 
approximate number of soft checkpoints message between 
MSS to MHs is soft checkpoint request to N-Nmin and receives 
reply. Messages sent in the wired link are N receives vectors 
from each MSS to MSSini, and N-Nmin commit notification 
from MSSini to MSSs.  

d) Number of useless checkpoints: Our simulation model is 
similar to [1]. For simplicity, concurrent initiations and 
failures are not considered. Each process sends out 
computation messages with the time interval following an 
exponential distribution. We plot the average number of 
useless checkpoints for [4], [5] and the proposed algorithm in 
example shown in Fig. 3.  

0

0.1

0.2

0.3

0.4

0.5

0 0.001 0.01 0.1 1 10

Message Sending Rate

A
vg

. n
o.

 o
f U

se
le

ss
 C

he
ck

po
in

ts

On Coordinated[4]

Mutable[5]
Proposed

 

Fig. 3 Comparison of useless checkpoint 

 
It shows that proposed algorithm takes much reduced 

useless checkpoints which are nearest to minimum. The 
number of useless in checkpoints in algorithm [5] first 
increases in a higher rate on increasing the message sending 
rate and then decreases but in algorithm [4] it first increases in 
a low rate and finally decreases. This is because as the 
message sending rate increases, more messages are sent 
during checkpointing, which results in increase in mutable 
checkpoints. As the message sending rate increases from 0.1 
to 10, more and more processes are included in the minimum 
set; therefore, average number of a useless checkpoint keeps 
on decreasing. 

In Cao and Singhal algorithm [5], a checkpointing tree is 
formed and the number of useless checkpoints may be 
exceedingly high in some situations. Hence, due to non-
formation of checkpointing tree, the number of useless 
checkpoints in the proposed scheme is very small. 

e) Checkpoint overhead: checkpoint overhead is the increase 
in execution time of application due to checkpointing. Our 
soft checkpoint based approach have less checkpoint overhead 
compared to hard as the soft checkpoint are stored on the local 
memory of the MHs and does not have transferred cost. 

g) Recovery time: This is the time taken by a system to restore 
its last consistent checkpointed state after the failure. Proposed 
algorithm takes very less time to restore its last checkpointed 
state.  

V. CONCLUSION 
In this paper, soft checkpoint based non-blocking coordinated 
checkpointing algorithm  is proposed which efficiently deal 
with many new issues i.e., mobility of MHs, lack of stable 
storage at MH’s, low bandwidth of wireless channels and 
limited battery life of MH’s. The algorithm has reduced 
overheads in term of number of coordination message, 
minimizing the number of checkpoints and useless 
checkpoints which is the basic requirements for MDSs. The 
proposed approach also provides fast recovery in case of a 
single node failure as soft checkpoint is stored on local disk of 
MHs. It is said that soft checkpoint are not reliable as during 
failure soft checkpointed data lost as it is stored on volatile 
memory. In our approach during failure or disconnections of a 
node these soft checkpoint are converted in to permanent 
checkpoint. our algorithm also reduce power consumption 
because (1)  if an MH is in active mode, its power 
consumption is highest: in  our approach power consumption 
is low as it forces only minimum numbers of processes which 
are directly or transitively dependent on MSSini during current 
CI and does note awake the processes in doze mode. (2) As 



www.ijraset.com                                                                                                                                    Vol. 2 Issue V, May 2014 
                                                                                                                                                                    ISSN: 2321-9653 

I N T E R N A T I O N A L J O U R N A L F O R R E S E A R C H I N A P P L I E D S C I  E N C E 
AN D E N G I N E E R I N  G T E C H N O L O G Y (I J  R A S E T) 

 
 

Page 
159 

 

  

message sending consumes more power:  our approach 
consumes less power as minimum checkpointed data is 
transferred through the wireless link as our soft checkpoints 
are stored locally on the MHs. (3) Taking extra checkpoints 
also consumes power: our soft checkpointing approach takes 
only  reduced  number of checkpoints nearest to minimum, so 
power consumption in our is low. 

REFERENCES 
[1]   Acharya A. and Badrinath B.R., “Checkpointing 

Distributed Application on Mobile Computers”, in the 
Proc. of the 3rd Int’l Conf. on Parallel and Distributed 
Information Systems, pp. 73-80, Sept. 1994.  

[2]   Koo R. and Toueg S., “Checkpointing and Roll-Back 
Recovery for Distributed Systems”, IEEE Trans. on 
Software Engg., Vol.13, No.1, pp.23-31, Jan. 1987. 

[3]   Chowdhury C. and Neogy S. “Checkpointing using 
Mobile Agents for Mobile Computing Systems”, Int’l 
Journal of Recent Trends in Engg., Vol. 1, No. 2, May 
2009.    

[4]   Cao G. and Singhal M., “On Coordinated Checkpointing 
in Distributed Systems”, IEEE Trans. on Parallel and 
Distributed Systems, Vol. 9, No.12, pp. 1213-1225, 
Dec.1998. 

[5]   Cao G. and Singhal M., “Mutable Checkpoints: A New 
Checkpointing Approach for Mobile Computing 
Systems”, IEEE Trans. on Parallel and Distributed 
Systems, Vol. 12, No.2, pp. 157-172, Feb. 2001. 

[6]   Prakash R. and Singhal M., “Low-Cost Checkpointing 
and Failure Recovery in Mobile Computing Systems”, 
IEEE Trans. on Parallel and Distributed Systems, Vol. 7, 
No.10, pp1035-1048, Oct. 1996. 

[7]   Pradhan, D.K., Krishna, P., and Vaidya, N.H.” Recovery 
in mobile environments: Design and trade-off analysis”. 
In Proceedings of the 26th International Symposium on 
Fault-Tolerant Computing, (Sendai, Japan, June 1996), 
IEEE, pp. 16–25. 

[8]   Kumar P., Kumar L., Chauhan R.K. and Gupta V.K., “A 
Non-Intrusive Minimum Process Synchronous 
Checkpointing Protocol for mobile Distributed Systems”, 
in the Proc. of the IEEE ICPWC-2005, Jan. 2005. 

[9]   Randell, B. System “structure for software fault 
tolerance”. IEEE Trans. Softw. Eng. SE-1, 2 (June 
1975), 220–232. 

[10]   N. Neves, “Time-based coordinated checkpointing,” 
Ph.D. dissertation, UIUCDCSR- 98-2054, University of 
Illinois at Urbana- Champaign, 1998.  

[11]   P. Kumar and R. Garg, “Soft checkpointing based 
coordinated checkpointing protocol for Mobile 
Distributed Systems”, International Journal of Computer 
Science Issues, Vol. 7, Issue 3, No. 5, May, 2010. 

[12]   S. Kumar, R.K. Chauhan and P. Kumar,“Reliable 
Soft-Checkpoint Based Fault Tolerance Approach for 
Mobile Distributed Systems”, International Journal of 
Computer and Network Security”, Vol. 2, No., June, 
2010. 

[13]   Parveen Kumar, R K Chauhan, “A Coordinated 
Checkpointing Protocol for Mobile Computing Systems”, 
International Journal of Information and Computing 
Science, Vol. 9, No. 1, pp. 18-27, 2006. 

 



 


