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Abstract—This paper investigates the problem of steady, laminar, two-dimensional boundary layer flow and heat transfer of 
an incompressible, viscous non-Newtonian fluid over a wedge. A non-Newtonian fluid represented by power law model. 
Similarity transformation method has been utilized to obtain the ordinary differential equations with associated boundary 
conditions from the partial differential equations. The transformed coupled ordinary differential equations are solved 
numerically. Numerical values of local Nusselt number are tabulated. The effects of various parameters on flow and the heat 
transfer characteristics are discussed numerically and presented graphically. Comparison of present study with the existing 
limiting solution is shown and examined. 
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I. INTRODUCTION

In recent years, the study of boundary layer flow of non-
Newtonian fluid over a wedge has generated considerable 
interest for its numerous industrial and engineering 
applications such as the boundary layer along a liquid film, 
polymer processing and chemical engineering processes. 
Many fluids such as cosmetics and toiletries, paints, glues, 
multiphase mixtures, biological fluids and food items are non-
Newtonian in nature (Andersson and Irgens [1], Bird et al. [2], 
Schowalter [3], Irvine and Karni [4], Postelnicu and Pop [5]).

Acrivos [6] examined the behavior of boundary layer flows 
for non-Newtonian fluids and after that; many related studies 
have been investigated. Astarita and Marrucci [7] and Bohme 
[8] proposed the mathematical models of non-Newtonian fluid 
for both steady and unsteady flows. The steady boundary layer 
flow of non-Newtonian power law fluid past a moving wedge 
on a flat plate was analyzed by Ishak et al. [9]. Magyari and 
Keller [10, 11] considered the problem of the thermal 
boundary layer of a moving surface. There are different non-
Newtonian fluid models available in the literature. The 
Ostwald-de Waele model, i.e., power-law fluid model is most 
common type of such models (Bird et al. [2]).

Chen and Chen [12] studied similarity solutions for free 
convection of non-Newtonian fluids over vertical surfaces in 
porous media. Gorla and Kumari [13] have investigated non-
similar solutions for mixed convection in non-Newtonian 
fluids along a wedge with variable surface temperature in 
porous medium. The problem of a steady stretching sheet foe 
power law fluid was studied by Andersson and Dandapat [14], 
Andersson et al. [15], Hassanien et al. [16], Chamkha [17], 
and Prasad et al. [18, 19].. Zhang et al. [20] analyzed the 
characteristics of the thermal boundary layer in Power law 
fluid flow on continuous moving surface. Moorthy and 
Senthilvadivu [21] discussed the effect of variable viscosity 
on free flow of non-Newtonian power law fluids along a 
vertical surface with thermal stratification. Surati and Timol 
[22] studied heat transfer in forced convection boundary layer 
flow of non-Newtonian fluids past a wedge.

This paper investigates the thermal boundary layer of 
power law fliud flow over a wedge. The numerical results of 
the resulting coupled ordinary differential equations are 
obtained using shooting technique under Matlab software. 
Results were given for velocity and temperature distributions, 
the coefficient of skin-friction and Nusselt numbers for 
various values of power law index, wedge parameter and 
different Prandlt numbers.         



www.ijraset.com Vol. 2 Issue VI, June 2014

ISSN: 2321-9653

I N T E R N A T I O N A L J O U R N A L F O R R E S E A R C H I N A P P L I E D S C I E N C E
AN D E N G I N E E R I N G T E C H N O L O G Y (I J R A S E T)

Page 77

II. MATHEMATICAL FORMULATION

Considering a two-dimensional steady, laminar, 
incompressible fluid obeying the power-law model [2], 
flowing over a wedge with constant wall temperature, Tw in a 
stationary coordinate system.The governing equations of 
boundary layer flow are [23 and 24]

Continuity equation:

E;E>+ 
E<E?= 0               (1) 

Momentum equation:

�E;E>+  �E;E?= �434>+ +CDNOE? (2)

Energy Equation:

�E2E>+�E2E?=!EH2E?H(3)

with the boundary conditions

At  y= 0:  u= ν= 0 and T= Tw, 

At  y → ∞:  u → U(x) = ��8 and T= T∞, 

At  x= 0:  u= U∞ and T= T∞,                                      (4)

where u and ν are the respective velocity components in the x-
and y-directions of the fluid flow, υ the kinematic viscosity of 
the fluid and U the reference velocity at the edge of boundary 

layer and is a function of x. m = 
@(,B.@)is the wedge parameter 

and " is the wedge angle.ρ is the density of fluid and α is the 

thermal diffusivity of the fluid, T the temperature in the 
vicinity of the wedge.

For power-law fluids the shear stress is defined as 
demonstrated by [1] and [26]

'>? = �WE;E?X9 (5)

where K is called the consistency coefficient and n is the 
power-law index n.

Thus, Equation (2) becomes

�E;E>+ �E;E?= �434>+ 0CEE?WE;E?X9(6)

The following transformations are utilized to facilitate the 
solution of the governing equations [24]

(= W0>CXGLIG[�(�)]WHLJGLIGX�(#)] (7)

#=  [&�(�)(,.9)/��]( GLIG) (8)      

$= 2.2∞2M.2∞
(9)                                            

where #is the similarity variable and f (#) and $(ƞ) are 
similarity dependent variables.

Now Equation (1) is satisfied automatically. Substituting 
Equations (7-9) into momentum equation (6) and energy 
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equation (3) lead to the following ordinary differential 
equations:

�′′′ + ,89.8-+9(9-+) �(�′′)(,.9)+89(1 −�′,)(�′′)(+.9)=0      (10)        

$′′ + %����$′ = 0(11)

where %= ,89.8-+9-+ , �= 1515(L,N)H/(LIG) , ��(n,x) = 
>L3HJL

ν
is the 

generalized Reynolds number for non-Newtonian fluids and ��= >3A and ��= CA/K7 are Reynolds number and Prandlt 

number, respectively.

The associated boundary conditions are: 

At η = 0: �= 0,�′ = 0, θ = 1 

At η → ∞: �′ = 1, θ = 0                                          (12)

where primes denote differentiation with respect to #. 

For Newtonian fluid, index of power law fluid n=1 and 
m=0, Equation (11) reduces to

$′′ + +,��(�+ 1)�$′ = 0(13)

The important physical quantity of interest is the Nusselt 
number which can be defined as

��>= 
:M>(2F.2∞)7= −$′(0)��(>,9) GLIG(14)

III. RESULTS AND DISCUSSION

All Numerical Numerical results are obtained to study the 
effect of the various values of the R, wedge parameter m, 
power law index n and Prandtl number Pr on dimensionless 
temperature and rate of heat transfer. Our present results have 
also been compared for Newtonian fluid (n = 1) with those of 
Bejan [27]. The comparison results are given in Table I. The 

numerical results for / θ′(0) are tabulated in Tables II-IV.

The temperature profiles are displayed in Figure 1-4 for 
prescribed values of m, n, Pr and R. We see that the 
temperature profiles decreases as the R, Pr and m increases 
but with the increase in n the temperature profiles are 
increases. Figure 5-7 depict the effects of the Prandtl number 
Pr, wedge parameter m and power law index n on Nusselt 
number. As Pr and m increases, the Nusselt number increase 
for a given n and it decreases as n increases.  

Figure 1.  Temperature profiles for different values of R
when n = 0.5, m = 1/9 and Pr = 0.7
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Figure 2.  Temperature profiles for different values of Pr
when n = 0.5, m = 1/9 and R = 0.25

Figure 3.  Temperature profiles for different values of m
when n = 0.5, Pr = 0.7 and R = 0.25

Figure 4.  Temperature profiles for different values of n
when m = 1/9, Pr = 0.7 and R = 0.25

Figure 5.  Variation of Local Nusselt number for different 
values of Pr

when n = 0.5 and m = 1/9

Figure 6.  Variation of Local Nusselt number for different 
values of m

when n = 0.5 and Pr = 0.7
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Figure 7.  Variation of Local Nusselt number for different 
values of  n

when m = 1/9 and Pr = 0.7
Table I. Comparison of the results of /$′(0) for various 

values of wedge parameter � and Prandtl number ��when �= 1 and �= 1
Table II. Values of −θ′(0) for different values of wedge 

parameter m and R when n = 0.5 and Pr = 0.7
R

−)′(*)
m = 0 m = 1/9 m = 1/3

0.25
0.5

0.75
1.0

1.25
1.5

1.75
2.0

0.1942
0.2511
0.2910
0.3226
0.3491
0.3722
0.3928
0.4115

0.2071
0.2716
0.3173
0.3536
0.3843
0.4110
0.4349
0.4566

0.2205
0.2933
0.3453
0.3870
0.4223
0.4532
0.4809
0.5061

Table III. Values of −θ′(0) for different values of Pr when n = 0.5 and m = 1/9

R
−)′(*)

Pr = 0.7 Pr = 0.8 Pr = 1.0

0.25
0.5

0.75
1.0

1.25
1.5

1.75
2.0

0.2071
0.2716
0.3173
0.3536
0.3843
0.4110
0.4349
0.4566

0.2182
0.2860
0.3337
0.3717
0.4037
0.4316
0.4566
0.4793

0.2382
0.3114
0.3628
0.4037
0.4381
0.4682
0.4950
0.5194

TABLE IV.  VALUES OF −$′(0) FOR �= 1/9
AND ��= 0.7

R
−)′(*)

n = 0.5 n = 1 n = 1.5

0.25
0.5

0.75
1.0

1.25
1.5

1.75
2.0

0.2071
0.2716
0.3173
0.3536
0.3843
0.4110
0.4349
0.4566

0.1946
0.2547
0.2973
0.3312
0.3597
0.3845
0.4067
0.4268

0.1895
0.2486
0.2908
0.3243
0.3524
0.3769
0.3987
0.4185

IV. CONCLUSIONS

In this paper, we have presented a thermal analysis of non-
Newtonian fluids over a wedge. Numerical solutions using 
Runge-Kutta method with shooting technique were obtained 

m

−)′(*)
Pr = 0.7 Pr = 0.8                 Pr = 1.0

Presen
t

results

Bejan 
[27]

Presen
t 

results

Beja
n 

[27]

Presen
t 

results

Beja
n 

[27]

0
1/
9
1/
3

0.2927
0.3312
0.3841

0.292
0.331
0.384

0.3069
0.3480
0.4043

0.307
0.348
0.403

0.3320
0.3778
0.4400

0.332
0.378
0.440
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for the temperature fields for several values of the wedge 
parameter m, Prandlt number Pr for temperature variation and 
power law index n. The main findings of the present analysis 
are as follows:

 As the wedge angle increases, the dimensionless 
temperature decreases and Nusselt number increases.

 The ratio of Reynolds number to the generalized 
Reynolds number leads to decrease the dimensionless 
temperature, while the rate of heat transfer at the wall 
increases. 

 With increase in Prandtl number, the heat transfer 
rate increases and the dimensionless temperature 
decreases for both Newtonian and non-Newtonian 
fluids. 

 Increase in power law index leads to increase of the 
dimensionless temperature and decrease of the heat 
transfer rate. 

NOMENCLATURE� fluid velocity component along x- direction within

boundary layer� fluid velocity component along y-direction within 

boundary layer�(�) free stream velocity � wedge parameter � index of power law fluid ��/�� pressure gradient in x-direction��(>,9)generalized Reynolds number  �6> generalizedlocal skin friction coefficient �(�) generalized  shear stress coefficient � characteristic  length� dimensionless stream function ( stream function 

# streching function '>? shear stress 

K consistency coefficient& density of the fluid" wedge angle '= wall shear stress 

Subscripts

w wall conditions

REFERENCES

[1] H.I.Andersson, and F. Irgens, Film flow of power law 
fluids. in: N.P. Cheremisionoff (Ed.), Encyclopedia of 
Fluid Mechanics, vol. 9, Gulf Publishing Company, 
Texas, vol. 9,pp. 617–648,1990.

[2] R. B. Bird, R. C. Armstrong, andO. Hassager, Dynamics 
of Polymeric Liquids,Fluid Mechanics, second ed., 
Wiley, New York, vol. 1, 1987.

[3] W.R. Schowalter, “The application of boundary layer 
theory to power-law pseudoplastic fluid: similar 
solutions”, AIChE Journal, vol. 6, pp. 24-28,1960.

[4] T. F. Irvine, andJ. Karni, Non-Newtonianfluid flow and 
heat transfer, Chapter 20 in Handbook of Single Phase 
Convective Heat Transfer (Ed. S. Kakac, R. K. Shah, and 
Aung, W.), vol. 20, no. 1, pp. 20-57, 1987.

[5] A. Postelnicu, andI. Pop, “Falkner–Skanboundary layer 
flow of a power-law fluid past a stretching 
wedge”,Applied Mathematics and Computation, vol. 
217, pp. 4359–4368, 2011.

[6] A. Acrivos, “A theoretical analysis of laminar natural 
convection heat transfer to non-Newtonian 
fluid”,American Institute of Chemical Engineers 
Journal, vol. 6, pp. 584–590, 1960.   

[7] G. Astarita, and G. Marrucci, Principles of Non–
Newtonian Fluid Mechanics, McGraw-Hill, New York, 
1974. 



www.ijraset.com Vol. 2 Issue VI, June 2014

ISSN: 2321-9653

I N T E R N A T I O N A L J O U R N A L F O R R E S E A R C H I N A P P L I E D S C I E N C E
AN D E N G I N E E R I N G T E C H N O L O G Y (I J R A S E T)

Page 82

[8] H. Bohme, Non–Newtonian Fluid Mechanics, North–
Holland Series in Applied Mathematics and Mechanics, 
1987.

[9] A. Ishak, R. Nazar, andI. Pop, “Moving wedge and flat 
plate in a power-law fluid”, InternationalJournal of Non-
Linear Mechanics,vol. 46, pp. 1017–1021, 2011.

[10] E. Magyari and B. Keller,“Heat and mass transfer in the 
boundary layers on an exponentially stretching 
continuous surface”,Journal of Physics D: Applied 
Physics, vol. 32, pp. 577-585, 1999.

[11] E. Magyari and B. Keller, “Heat transfer characteristics 
of the separation boundary flow induced by a continuous 
stretching surface”,Journal of Physics D: Applied 
Physics, vol.32, pp. 2876-2881, 1999.

[12] H. T. Chen and C. K. Chen,“Free convection of non-
Newtonian fluids along a vertical plate embedded in a 
porous medium”,Transactions of ASME, Journal of  
Heat transfer, vol. 110, pp. 257-260, 1988.

[13] R. S. R. Gorla and M. Kumari, “Nonsimilar solutions for 
mixed convection in non-Newtonian fluids along a 
wedge with variable surface temperature in a porous 
medium”,International  Journal of  Numerical Methods 
for Heat & Fluid Flow, vol. 9, no. 5,pp. 601-611, 1999.

[14] H. I. Andersson and B. S. Dandapat,“Flow of a power-
law fluid over a stretching sheet”,Stability Appl. Anal. 
Continuous Media, vol. 1, pp. 339-347, 1991. 

[15] H. I. Andersson, J. B. Aarseth, N. Braud, and B. S. 
Dandapat,“Flow of a power-law fluid film on an 
unsteady stretching surface”, Journal of Non-Newtonian 
Fluid Mechanics, vol. 62, pp. 1-8, 1996.

[16] I. A. Hassanien, A. A. Abdullah, and R. S. R. 
Gorla,“Flow and heat transfer in a power-law fluid over 
a non-isothermal stretching sheet”,Mathematical and 
Computer Modeling, vol. 28, pp. 105-116, 1998.

[17] A. J. Chamkha,“Similarity solution for thermal boundary 
layer on a stretched surface of a non-Newtonian 
fluid”,International Communications in Heat and Mass 
Transfer, vol. 24, pp. 643-652, 1977.

[18] K. V. Prasad, D. Paland P. S. Datti,“MHD power-law 
fluid flow and heat transfer over a non-isothermal 
stretching sheet”, Communications in Nonlinear Science 
Numerical  Simulations,vol. 14, pp. 2178-2189, 2009.

[19] K. V. Prasad, P. S. Dutti and B. T. Raju, “Momentum 
and heat transfer of a non-Newtonian Eyring-Powell 
Fluid over a Non-isothermal stretching 
sheet”.International Journal of Mathematical Archive, 
vol. 4, no. 1, pp. 230-241, 2013.

[20] H. Zhang, X. Zhangand L. Zheng,“An analysis of the 
characteristics of the thermal boundary layer in power 
law fluid”,Journal of Thermal Sciences, vol. 17, no. (3), 
pp. 233-237, 2008. 

[21] M. B. K. Moorthy andK. Senthilvadivu,“Effect of 
variable viscocity on free flow of non-Newtonian power-
law fluids along a vertical surface with thermal 
stratification”. Archives of Thermodynamics, vol. 33, pp. 
109-121, 2012.

[22] H. C. Suratiand M. G. Timol, “Numerical Study Of 
Forced Convection Wedge Flow Of Some Non-
Newtonian Fluids”,International Journal of Applied 
Mathematics and Mechanics, vol. 6, no.18, pp. 50-65, 
2010.

[23] M. S. Abel, P. G. Siddheshwar and N. Mahesha, “Effect 
of thermal buoyancy and variable thermal conductivity 
on the MHD flow and heat transfer in a power-law fluid 
past a vertical stretching sheet in the presence of a non-
uniform heat source”,International Journal of Non-
Linear Mechanics,vol. 44, pp. 1-12, 2009.

[24] T. R. Mahapatra,S. K. Nandy and A. S. Gupta, 
“Magnetohydrodynamic stagnation-point flow of a 
power-law fluid towards a strechiing 
surface”,International Journal of Non-Linear 
Mechanics, vol. 44, pp. 124-129,  2009.

[25] W. L. Wilkinson, Non- Newtonian Fluids. Pergamon 
Press, London, 1960.

[26] A. Bejan, Convection Heat Transfer, Third Edition. 
Wiley, 2009.



 


