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Abstract: In this paper, a system of three differential equations describing the generalized elastic column buckling problem for 
axial compressive load, Nx acting through the centroid of the cross-section; and such that the bimoment is zero is solved by the 
Galerkin variational method for columns with two pinned ends. The problem was found to reduce to an algebraic eigen-value 
problem for which the characteristic buckling equation was found. Two specializations of the buckling problem – doubly 
symmetric cross-sections and singly symmetric cross-sections were considered. For doubly symmetric cross-sections, it was found 
that the buckling modes are uncoupled resulting in three possibilities for the failure – Euler flexural buckling failure load in the 
z axis, Euler flexural buckling failure load in the y axis and the critical load in torsional buckling. The least value of the three 
buckling loads governs the buckling mode of failure. For columns with singly symmetric cross-sections, one of the governing 
equations becomes uncoupled while the other two become coupled. The characteristic buckling equation shows the column can 
fail by Euler flexural buckling in the yy direction and torsional – flexural buckling mode. The values of the buckling load 
(eigen-values) obtained using the Galerkin variational method were found to be identical with solutions for the same problem 
obtained in the literature using the method of undetermined parameters. 
Keywords: Euler flexural buckling, singly symmetric cross-sections, eigen-value problem; characteristic buckling equation, 
Galerkin variational method. 

I. INTRODUCTION 
While buckling is a broad term, it generally refers to a situation where a structural element in compression deviates from a 
behaviour of elastic shortening within the original geometry and undergoes large deformations involving a change in member shape 
for a very small increase in load [1]. When the member has symmetry of cross-sectional geometry, section resistance and load, it 
may buckle in two directions; a phenomenon called bifurcation buckling. The buckling load is the load at which the deviation from 
the original geometry first occurs, and it is also called the critical load or bifurcation load. 
If the proportional limit of linear elasticity has not been reached at any point in the member before the critical load is attained, the 
buckling is referred to as elastic buckling [2, 3]. Closed sections will not buckle torsionally because of their large torsional rigidity. 
For open thin walled sections, however, three modes of failure are considered in the analysis of instability namely – flexuaral 
buckling; torsional buckling and torsional flexural buckling [4, 5].  Flexural – torsional buckling mode involves simultaneous 
bending and twisting of the cross-section. The cross-section undergoes translation in the two axis of the cross-section and rotates an 
angle  about the shear centre. The flexural – torsional buckling problem of columns has been studied by Alsayed [4] and 
Timoshenko and Gere [6]. It has also been studied by Allen and Bulson [7], Chajes [8] and Wang et al [9] and used in the 
development of the design criteria for steel design. 

 
II. RESEARCH AIMS AND OBJECTIVES 

The general objective of this work is to solve using the Galerkin variational method the generalised elastic column buckling problem 
defined by a system of three coupled differential equations in terms of the three unknown displacement functions, v, w and . The 
specific objectives are to solve the generalised elastic column buckling problem for pinned – pinned ends using the Galerkin 
variational method, and to derive the critical buckling loads for two special cases; namely – columns with doubly symmetric cross-
sections and columns with singly symmetric cross-sections. 
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III. METHODOLOGY 

The Galerkin method belongs to the general class of variational methods, and seeks to obtain approximate solutions to differential 
equations with given boundary conditions by choosing the unknown functions in terms of a linear combination of coordinate (basis) 
shape function that satisfy the boundary conditions exactly and then proceeds to obtain the unknown parameters of the chosen basis 
functions by solving the Galerkin variational functional [10, 11]. 
The buckling problem of columns is an eigen value problem. The general eigen-value problem is given by [12] 
    0Lw Mw       (1) 
where L and M are differential operators. 
The virtual work of internal forces wi and the virtual work of external forces we is 

0( )i e i ew w w w              (2) 

Thus, applying the virtual work principle, the general eigen value problem can be expressed in variational form as 

   ( ( ) ( ))L w M w w A 0        (3) 

Let ( , )i iw c f x y  

where fi(x, y) are functions satisfying the boundary conditions, and ci are unknown parameters; then we obtain 

  0( ( )) ( , )i iLw M w f x y c dA        (4) 

  0( ( ) ( )) ( , )i ic L w M w f x y dA       (5) 

Equation (5) will be satisfied for any small variation wi, thus the variations ci are arbitrary and Equation (5) simplifies to 

  0( ) ( , )i
R

Lw Mw f x y dxdy       (6) 

where R is the domain of the problem. 
Equation (6) is the Galerkin variational equation describing the eigen value problem of an n – degree of freedom system. For one 
dimensional domains, we have 

  0( ) ( )iLw Mw f x dx   ,  i  1, 2, …, n  (7) 

Equations (7) lead to homogeneous algebraic eigen-value – eigen-vector problems. The lowest eigen-value min cr   determines 

the critical load for the case of buckling [12, 13]. 
 

IV. GOVERNING EQUATIONS OF ELASTIC COLUMN 
We consider a column of length l, whose longitudinal axis is defined by the x coordinate, and the plane of the cross-section is 
defined by the yz coordinates. The governing differential equations that describe a generalized elastic column buckling problem for 
axial compressive load Nx acting through the centroid of the cross-section; the moments due to the transverse loads are zero, the 
applied torque vanishes; and the load is applied such that the bi-moment is zero are given by the following set of differential 
Equations [5]. 

 
4 2 2

4 2 2 0zz x x z
d v d v dEI N N e
dx dx dx


        (8) 

 
4 2 2

4 2 2 0yy x x y
d w d w dEI N N e
dx dx dx


       (9) 

 
4 2 2 2

4 2 2 2 0E x
w z x y x

I Nd d d v d wEC GJ e N e N
Adx dx dx dx

       
 

 (10) 
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where v(x), w(x) and (x) are the displacements. 
E = Young’s modulus of elasticity 
G = modulus of rigidity or shear modulus 
Cw = warping constant 
Izz = moment of inertia about the z axis 
Iyy = moment of inertia about the y axis 
ez = coordinate of the shear centre 
ey = coordinate of the shear centre 
Nx = load in the x – direction 
IE = polar moment of inertia about the shear centre 
J = St Venant torsional stiffness of the section 

2 2( )E yy zz y zI I I e e A     

A  area of cross-section. 
 

V. APPLICATION OF THE GALERKIN – VARIATIONAL METHOD TO THE GENERAL COLUMN BUCKLING 
PROBLEM 

We seek a Galerkin solution to the system of differential Equations [8], [9], and [10] for a column of length l with pinned ends at x  
0, x  l. The unknown quantities in the governing equation are the three displacements v, w and ; and we seek a solution to the 
column buckling problem for the case of pinned – pinned end supports. The boundary conditions for pinned – pinned supports at x  
0, x  l are 
   0 0( ) ( )v x v x l     

   0 0( ) ( )w x w x l     

   0 0( ) ( )x x l          (11) 

   0 0( ) ( )v x v x l      

   0 0( ) ( )w x w x l      

   0 0( ) ( )x x l        

where the primes denote differentiation with respect to x. 
Suitable displacement (buckling) functions that satisfy the pinned – pinned conditions at x  0, x  l are obtained as the Fourier sine 
series, as follows; for an infinite one parameter representation of the displacements: 

  
1

( ) sinm
m

m xv x v
l


 


 

  
1

( ) sinm
m

m xw x w
l






       (12) 

  
1

( ) sinm
m

m xx
l






    

where vm, wm and m are the unknown parameters of the displacement functions, and sin m x
l
  are the shape (coordinate) functions 

of the displacements. 
The Galerkin Vlasov variational integrals are 

4 2

4 2
1 10

sin sin
l

zz m x m
m m

d m x d m xEI v N v
l ldx dx

 

 

     
           

    
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2

2
1

0sin sinx z m
m

d m x m xN e dx
l ldx





   
    

      (13) 

4 2

4 2
1 10

sin sin
l

yy m x m
m m

d m x d m xEI w N w
l ldx dx

 

 

     
           

    

  
2

2
1

0sin sinx z m
m

d m x m xN e dx
l ldx





   
      

      (14) 

4 2

4 2
1 10

sin sin
l

E x
w m m

m m

I Nd x d xEC GJ
l A ldx dx

 

 

                    
     

2 2

02 2
1 1

0sin sin sinx z y x m
m m

d m x d m x m xN e v e N w dx
l l ldx dx

 

 

      
           

     (15) 

Simplifying, we have form the orthogonality properties of the slope functions, 
4 4 2 2

2 2
4 2

1 0

sin sin
l

zz m x m
m

m m x m m xEI v N v
l ll l





    



    

  
2 2

2
2 0sinx z m

m m xN e dx
ll

 
 


        (16)   

4 4 2 2
2 2

4 2
1 0

sin sin
l

yy m x m
m

m m x m m xEI w N w
l ll l





    



    

  
2 2

2
2 0sinx y m

m m xN e dx
ll

 
 


      (17) 

4 4 2
2 2

4 2
1 0

sin sin
l

E x
w m m

m

I Nm m x m m xEC GJ
l A ll l





        
      

 
2 2 2 2

2 2
2 2 0sin sinx

z m y x m
N m m x m m xe v e N w dx

l ll l
   



     (18) 

Simplifying further, we obtain: 
4 4 2 2 2 2

14 2 2 0zz x m x z m
m m mEI N v N e I

l l l

          
   

    (19) 

4 4 2 2 2 2

14 2 2 0yy x m x y m
m m mEI N w N e I

l l l

          
   

    (20) 

4 4 2 2 2 2 2 2

14 2 2 2 0E x
w m z x m y x m

I Nm m m mEC GJ e N v e N w I
Al l l l

                   
 (21) 
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where     2
1

0

sin
l m xI dx

l


      (22)         

Hence, Equations (19), (20) and (21) simplify further to become the following system of homogeneous equations in terms of the 
displacement amplitudes, vm, wm, m 

4 4 2 2 2 2

4 2 2 0zz x m x z m
m m mEI N v N e

l l l
   

    
 

          (23) 

4 4 2 2 2 2

4 2 2 0yy x m x y m
m m mEI N w N e

l l l
   

    
 

          (24) 

4 4 2 2 2 2 2 2

4 2 2 2 0E x
w m z m y x m

I Nm m m mEC GJ e v e N w
Al l l l

            
  

 (25) 

In matrix form, we obtain the homogeneous equation 
2 2

2

2 2

2

2 2

2

0 0

0 0

0

zz x x z m

yy x x y m

E x
mz x y x w

mEI N N e v
l

mEI N N e w
l

I Nme N e N EC GJ
Al

  
       

      
            
     
    

                     

     (26) 

For non trivial solutions, the determinant of coefficient matrix must vanish, and we obtain the stability equation as the determinantal 
equation 

2 2

2

2 2

2

2 2

2

0

0 0

zz x x z

yy x x y

E x
x z x y w

mEI N N e
l

mEI N N e
l

I NmN e N e EC GJ
Al

 
  

 
 

  
 

 
   

 

  (27) 

The characteristic buckling equation is obtained by expanding equation (27) and finding the roots of the resulting polynomial in Nx. 
We consider two special cases of this problem which can be viewed as simplifications of the general problem. 
Case 1:  The cross-section is doubly symmetric (such as symmetric I sections, crucifix + sections) and ey  ez  0; then the stability 
equation simplifies to Equation [28]: 

2 2

2

2 2

2

2 2

2

0 0

0 0 0

0 0

zz x

yy x

E x
w

mEI N
l

mEI N
l

I NmEC GJ
Al

 
 

 
 

   
 

 
  

 

  (28) 

Expanding, the buckling (characteristic) equations is found to be already in factorised form as: 
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2 2 2 2 2 2

2 2 2 0E x
zz x yy x w

I Nm m mEI N EI N EC GJ
Al l l

     
       

   
       (29) 

The three roots of the buckling (characteristic) equation are 

  
2 2

2x zz Ezz
mN EI P

l


        (30)      

  
2 2

2x yy Eyy
mN EI P

l


            (31) 

  
2 2

2x w T
E

A mN EC GJ P
I l

 
   

 
         (32) 

where PEzz is the Euler load for buckling about the zz axis, PEyy is the Euler load for buckling about the yy axis and PT is the buckling 
load in torsional (twist) buckling. The stress in torsional buckling is 

  
2 2

2
1T T

xx w
P

PmEC GJ
I Al

 
     

 
     (33) 

where IP  IE for doubly symmetric cross-sections. 
Case 2: The cross-section is singly symmetric such as channel sections. If the zz axis is the axis of symmetry, then ey  0, ez  0, and 
the buckling equation becomes 

2 2

2

2 2

2

2 2

2

0

0 0 0

0

zz x x z

yy x

E x
x z w

mEI N N e
l

mEI N
l

I NmN e EC GJ
Al


 


 

 
   

 

  (34) 

Expanding, 
2 2 2 2 2 2

2
2 2 2 0( )E x

yy x zz x w x z
I Nm m mEI N EI N EC GJ N e

Al l l

                  
      

 (35) 

The roots are 
2 2

2x yy Eyy
mN EI P

l


   For m = 1, we obtain critical loads. 

 

2

2

4 1

2 1

( ) ( )
zz

z
T E T Ezz Ezz T

E
x

z

E

AeP P P P P P
I

N
e A
I

        
  

 
 

 

 

   ( ) ( )x T Ezz T Ezz Ezz TN P P P P P P        
21 4

2
   (36)      

where 
2

2 ,Ezz zzP EI
l


  
2

1 ,z

E

Ae
I

    
2

2T w
E

AP EC GJ
I l

 
  

 
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Nx given by Equation (36) represents the buckling load for the coupled torsional flexural buckling mode. A negative sign in equation 
(36) will yield smaller values, hence 

 

( ) ( ) z
Ezz T T Ezz T Ezz

E
x

z

E

AeP P P P P P
I

N
Ae
I

  
      

   
 

 
 

2
2

2

4 1

2 1

   

 ( ) ( )x T Ezz T Ezz Ezz TN P P P P P P       
21 4

2
     (37) 

The critical buckling stress for the coupled torsional flexural buckling mode is obtained as 

( ) ( )E T E T E Tz
xx cr xx cr xx cr xx xx cr xx cr

EET
xx cv

z

E

Ae
I

Ae
I

  
                

 
 

 

2
2

2

4 1

2 1

  

 ( ) ( )E T E T E T
xx cr xx cr xx cr xx xx cr xx

            
21 4

2
    (38) 

where 
2

2( / )
E
xx cr

y

E
l r


  , 
2

2 2 1( )
T
xx cr w

E

E JC
I l
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VI. DISCUSSION AND CONCLUSION 

For doubly symmetric shapes of cross-section such as (symmetric I sections) I or + (cruciform sections), the  shear  centre  coincide  
with  the  centroid of the cross-section, and ey  ez  0. The system of governing differential equations become uncoupled leading to 
buckling modes that are uncoupled. The characteristic buckling equation for doubly symmetric sections, given by Equation (22) has 
three roots, which are the Euler flexural buckling load in the z axis, the Euler flexural buckling load in the y axis, and the load in 
torsional (twist) buckling. The critical buckling load is the lowest value of the three buckling loads and determines how the column 
with doubly symmetric cross-section will fail. 

where zz axis is the axis of symmetry, ey  0 For columns with singly symmetric sections like   
and the general system of equations make Equation (9) independent of the Equations (8) and (10), with Equations (8) and (10) being 
coupled. The characteristic (buckling) Equation (35) reveals the column can fail by Euler flexural buckling mode in the yy direction 
and torsional – flexural buckling mode. Three values of the buckling load were determined; namely: 
Euler flexural buckling load in the yy direction 
Two (coupled) torsional flexural buckling loads given by Equation (36). 
Evidently, Equation (37) gave lower values of the torsional flexural buckling load; and the mode of failure would be governed by Nx 
in Equation (37) or the Euler flexural buckling load in the y direction, whichever one is smaller. The values of buckling loads 
obtained using the Galerkin variational method are in excellent agreement with solutions by Det [13] and Wang et al [9]. 
It is seen that columns with singly symmetric sections may buckle either in Euler flexural buckling mode or in torsional – flexural 
buckling mode; while in columns with doubly symmetric sections the buckling differential equations are uncoupled and the 
buckling modes are uncoupled. 
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