

INTERNATIONAL JOURNAL FOR RESEARCH

IN APPLIED SCIENCE & ENGINEERING TECHNOLOGY

Month of publication: Volume: February 2017 5 **Issue: II** DOI: http://doi.org/10.22214/ijraset.2017.2028

www.ijraset.com

Call: 008813907089 | E-mail ID: ijraset@gmail.com

www.ijraset.com Volume 5 Issue II, February 2017

International Journal for Research in Applied Science & Engineering

Technology (IJRASET)

$\hat{\delta} \omega$ Closed Sets in Ideal Topological Space

V. Sree Rama Krishanan¹, R. Senthil Amutha²

Department of Mathematics, Sree Saraswathi Thyagaraja College, Pollachi, Coimbatore, Tamilnadu,India.

Abstract: In this paper the notion of $\delta \omega$ closed sets is introduced and some of its basic properties are studied. This new class of *setsisindependentofsemiclosedand closed sets. Also the relationshipwith some ofthe knownclosed setsis discussed. Keywords:* ࢾ࣓ *closed sets, closed sets, ^ω closed sets.*

I. INTRODUCTION

Levine, velicko introduced the notions of generalized closed (briefly gclosed) and δ closed sets respectively and studied their basic properties. The notion of *Ig* closed sets was first introduced by Dontchev in 1999. Navaneetha Krishanan and Joseph further investigated and characterized *Ig* closed sets. Julian Dontchev and maximilian Ganster, Yuksel, Acikgoz and Noiri introduced and studied the notions of *δ* generalized closed (briefly *δ* g closed) and *δ*-I-closed sets respectively. The purpose of this paper is to define a new class of sets called $\delta\omega$ closed sets and also study some basic properties and characterizations.

Throughout this paper (X, *τ* ,I) represents a ideal topological space on which no separation axiom is assumed unless otherwise mentioned. For a subset A of a ideal topological space X, cl(A) and int(A) denote the closure of A and the interior of A respectively. $X \diagup A$ or A^c denotes the complement of A in X. We recall the following definitions and results.

II. PRELIMINARIES

A. subset A of a space X is called

pre-open set if $A \subseteq \text{intcl}(A)$ and pre-closed set if $\text{clint}(A) \subseteq A$. semi-open set if $A \subseteq \text{clint}(A)$ and semi-closed set if $\text{intcl}(A) \subseteq A$. V.Sree Rama Krishnan. and R.Senthil Amutha regular open set if $A = intcl(A)$ and regular closed set if $A = clint(A)$. Π -open set if *A* is a finite union of regular opensets. regular semi open if there is a regular open *U* such $U \subseteq A \subseteq cl(U)$

B. A subset A of (X, τ) iscalled

generalized closed set, if $cl(A) \subseteq U$, whenever $A \subseteq U$ and *U* is open in X. regular generalized closed set, if $cl(A) \subseteq U$, whenever $A \subseteq U$ and U is regular open in X. weakly generalized closed set, if $clint(A) \subseteq U$, whenever $A \subseteq U$ and U is open in X. weakly closed set, if $cl(A) ⊆ U$ whenever $A ⊆ U$ and U is semi open in X. regular weakly generalized closed set, if $clint(A) \subseteq U$, whenever $A \subseteq U$ and U is regular open inX. regular weakly closed if $cl(A) \subseteq U$, whenever $A \subseteq U$ and U is regular semi open. g-closed if $cl(A) ⊆ U$, whenever $A ⊆ U$ and U is w-open.

Let A and B be subsets of an ideal topological space (X, τ, I) . Then, the following properties holds. $A \subseteq \sigma c l(A)$. If $A \subseteq B$, then $\sigma c l(A) \subseteq \sigma c l(B)$. $\sigma c l(A) = \bigcap \{ F \subset x \mid A \subset F \text{ and } F \text{ is } \delta - I - closed \}.$ If A is *δ* -I-closed set of X for each *α [∈]* ∆ , then *∩ {Aα/α [∈]* ∆*}* is *δ* -I-closed.

σ cl(A) is *δ*-I-closed.

δ .**I** closure is $\{x \in X: \text{int}(cl^*(U)) \cap A \neq \emptyset, U \in I\}$.

International Journal for Research in Applied Science & Engineering Technology (IJRASET)

III. ࢾ࣓ **- CLOSED SETS IN IDEAL TOPOLOGICAL SPACES**

Definition 3.1 : A subset *A* of an ideal space (X,*τ*, I) is called δω closed, if σ cl(*A*) ⊆*U*, whenever *A* ⊆*U* and *U* is ω open. Theorem 3.1

Every g-closed set in *X* is $\delta \omega$ -closed set in *X*.

Proof: Let *A* be an arbitrary g-closed set in the space *X*. Suppose $cl(A) \subseteq U$

whenever $A \subseteq U$ and U is open. i.e., $A \subseteq U$ and U is open. Then by the

 $\delta \omega$ - closed sets in ideal topological space

definition of $\delta \omega$ -closed set, if $\sigma cl(A) \subseteq U$, Whenever $A \subseteq U$ and U is ω open in X. Hence, the arbitrary element A of g-closed set belongs to *U* and also the arbitrary element *A* of $\delta \omega$ -closed set belongs to *U*. This implies *A* is a $\delta \omega$ -closed set.

Theconverseoftheabovetheoremisnottrue,whichisverifiedfromthefollowing example.

Example 3.1: Let $X = \{b, c, d\}$ be with topology $\tau = \{\phi, \{c\}, \{d\}, \{c, d\}, X\}$. Now if $cl(A) \subseteq U$, whenever $A \subseteq U$ and U is open in *X*. Then g-closed set will be $\{\phi, \{b\}, \{b, c\}, \{b, d\}, X\}$. Here, $A = \{c\}$ is a set. $\delta \omega$ -closed set but not g-closed. Theorem 3.2

Every closed set in *X* is $\delta \omega$ -closed set in X.

Proof: Let *A* be an arbitrary closed set in the space *X* , every closed set is g-closed set and from the theorem 3.1, every g-closed set in *X* is $\delta \omega$ -closed. Thus every closed set in *X* is $\delta \omega$ -closed.

Theconverseoftheabovetheoremisnottrue,whichisverifiedfromthefollowing example.

Example 3.2: Let $X = \{b, c, d\}$ be with the topology $\tau = \{\phi, \{c\}, \{d\}, \{c, d\}, X\}$ and $\tau^c = \{\phi, \{b, d\}, \{b, c\}, \{b\}, X\}$. Thus, the closed set is $\{\phi, \{b, d\}, \{b, c\}, \{b\}, X\}$. Here $A = \{c, d\}$ is $\hat{\delta} \omega$ -closed set but not closed set. Theorem 3.3

Every regular closed set in *X* is $\delta \omega$ –closed

Proof: Let A be an arbitrary regular closed set in the space X, every regular closed set is closed and from the theorem 3.1, every gclosed set in X is $\delta \omega$ –closed. This implies every regular closed set in X is $\delta \omega$ –closed.

The converse of the above theorem is not true, which is verified from the following example.

Example 3.3: Let $X = \{b, c, d\}$ be with the topology $\tau = \{\phi, \{c\}, \{d\}, \{c, d\}, X\}$ and $\tau^c = \{\phi, \{b, d\}, \{b, c\}, \{b\}, X\}$, the regular closed set, here is $\{\phi, \{b, d\}, \{b, c\}, X\}$. Then $A = \{c, d\}$ is $\delta \omega$ -closed set but not regular closed. Theorem 3.4

Every regular generalized closed set in X is $\delta \omega$ –closed.

Proof: Let A be an arbitrary regular generalized closed set in the space X. Suppose cl(A) \subseteq U. Whenever A \subseteq U and U is regular open. i.e., $A \subseteq U$ and U is regular open, every regular open set in X is open. Then by the definition of $\hat{\delta}\omega$ -closed set, if $\sigma c(A) \subseteq$ U, whenever $A \subseteq U$ and U is ω open in X. Hence, the arbitrary element A of regular generalized closed set belongs to U and the arbitrary element A of $\delta\omega$ -closed set belongs to U. This implies that A is a $\delta\omega$ -closed set.

The converse of above theorem need not be true, which is verified from the following example.

Example 3.4: Let $X = \{b, c, d\}$ be with topology $\tau = \{\phi, \{c\}, \{d\}, \{c, d\}, X\}$ and $\tau^c = \{\phi, \{b, d\}, \{b, c\}, \{b\}, X\}$. Then if cl(A) ⊆ U , whenever A ⊆ U and *U* is regular open in *X* . Then regular generalized closed set will be {ϕ, {b, d} , {b, c} , {c, d}, {b}, X}. Here $A = \{c\}$ is a $\delta \omega$ -closed set but not regular generalized closed set. Theorem 3.5

Every weakly generalized closed set in X is $\delta \omega$ -closed.

Proof: Let A be an arbitrary weakly generalized closed set in the space X .Then by definition of weakly generalized closed set and $\delta\omega$ -closed set the arbitrary element A of weakly generalized closed set belongs to U and the arbitrary element A of $\delta\omega$ – closed set belongs to U. This implies that A is a $\delta \omega$ -closed set.

The converse of the above theorem need not to be true, which is verified from the following example.

Example 3.5: Let $X = \{b, c, d\}$ be with the topology $\tau = \{\phi, \{c\}, \{d\}, \{c, d\}, X\}$. Now, if cl(int(A)) $\subseteq U$ whenever $A \subseteq U$ and U is open in X. Then wg-closed set will be $\{\phi, \{b, c\}, \{b, d\}, \{b\}, X\}$. Here $A = \{c\}$ is a $\delta \omega$ -closed set but not weakly generalized closed.

Theorem 3.6

Every semi closed set in X, is $\delta \omega$ –closed.

International Journal for Research in Applied Science & Engineering Technology (IJRASET)

 $\delta \omega$ - closed sets in ideal topological space

Proof: Let A be an arbitrary semi closed set in the space X, every semi closed set is closed and from the theorem 3.1 every closed set in X is $\delta\omega$ –closed set. This implies, every semi closed set in X is $\delta\omega$ closedset.

The converse of the above theorem is not true, which is verified from the following example.

Example 3.6: Let $X = \{b, c, d\}$ be with the topology $\tau = \{\phi, \{c\}, \{d\}, \{c, d\}, X\}$. Then from the definition of semi closed set $\{\phi, \{b,d\}, \{b,c\}, X\}$. Here $A = \{c\}$ is $\delta \omega$ -closedset, but not semi-closed.

Theorem3.7

Every weekly closed set in *X* is $\delta \omega$ –closed set.

Proof: Let A be a weakly closed set in the space X. Suppose cl(A)⊆U When ever A⊆ U and U is semi open in X. i.e., when ever A⊆ U and U is semi Open, every semi open set is open in X. Then by the definition of $\hat{\delta}\omega$ –closed set. if *σcl*(*A*)⊆*U*,whenever *A*⊆*U* and *U* is *ω*open in *X*. Hence, the arbitrary element A of weakly closed set belongs to U and the arbitrary element A of $\delta \omega$ –closed set belongs to U. This implies that A is a $\delta \omega$ –closed set in *X*.

The converse of the above theorem need not to be true, which is verified from the following example.

Example 3.7: Let $X = \{b, c, d\}$ be with the topology $\tau = \{\phi, \{c\}, \{d\}, \{c, d\}, X\}$. Now if cl(A) $\subseteq U$, whenever A $\subseteq U$ and U is semiopen in X. Then $U = \{\phi, \{c\}, \{d\}, X\}$. Then weakly closed set will be $\{\phi, \{b\}, \{b, c\}, \{c, d\}, X\}$. Here A= $\{c\}$ is a closed set in $\delta \omega$ - closed set, but not Weakly X.

Theorem3.8

Every regular weakly generalized closed set in X is $\delta\omega$ - closed.

Proof: Let A be a regular weakly generalized closed set in the space X. Suppose cl(int(A)) \subseteq U whenever A \subseteq U and U is open in X . i.e., $A \subseteq U$ and U is open, every regular open set in X is open. Then by the definition of $\delta \omega$ closed set, if $\sigma c I(A) \subseteq U$, whenever $A \subseteq U$ and U is $\hat{\delta}\omega$ open in X. Hence, the arbitrary element A of regular weakly generalized closed set belongs to U and the arbitrary element A of $\delta \omega$ -closed set belongs to U. This implies that A is a $\delta \omega$ -closed set in X.

example 3.8: Let $X = \{b, c, d\}$ be with the topology $\tau = \{\phi, \{c\}, \{d\}, \{c, d\}, X\}$. Now if cl(int(A)) $\subseteq U$, whenever A $\subseteq U$ and U is regular open in X. Then $U = \{\phi, \{c\}, \{d\}, X\}$. Then regular weakly generalized closed set will be $\{\phi, \{b\}, \{e\}, X\}$. ${b,d}, {b,c}, {c,d}, X$. Here A = {c} is a set, $\delta\omega$ closed set but not regular weakly generalized. Theorem 3.9

Every regular semi closed set in *X* is $\delta \omega$ closed set.

Proof: Let *A* be an arbitrary regular semi closed set in the space in *X*. Suppose $U \cup \subseteq A \subseteq cl(U)$ whenever U is regular open set in X is open. i.e., U is open. Then by the definition of $\hat{\delta}\omega$ -closed set, if $\text{cel}(A) \subseteq U$, whenever $A \subseteq U$ and U is $\delta\omega$ open in *X*. Hence, the arbitrary element A of regular semi closed set belongs to U and the arbitrary element A of $\hat{\delta}\omega$ -closed set belongs to *U*. Thus we can say that This implies that A is a $\hat{\delta}\omega$ -closed set.

The converse of the above theorem need not to be true, which is verified from the following example.

Example 3.9: Let $X = \{b, c, d\}$ be with the topology $\tau = \{\phi, \{c, \{d\}, \{c, d\}, X\}$ and $\tau^c = \{\phi, \{b, d\}, \{b, c\}, \{b\}, X\}$. Then, from the definition of regular semi closed set is $\{\phi, \{c\}, \{d\}, \{b, d\}, \{b, c\}, \{c, d\}, X\}$. Here let $A = \{b\}$ is $\delta \omega$ -closed set but not regular semi closed.

Theorem 3.10

Every regular weakly closed set in X is $\delta \omega$ - closed.

Proof: Let A be an arbitrary regular weakly closed set in the space X , every semi open set is open and from the theorem 3.2, every closed set in X is $\hat{\delta}\omega$ -closed set This is implies that every regular weakly closed set in X is $\hat{\delta}\omega$ -closed set

The converse of the above theorem is not true, which is verified using following example

 $\delta \omega$ closed sets in ideal topological space 7

Example 3.10: Let $X = \{b, c, d\}$ be with the topology $\tau = \{\phi, \{c\}, \{d\}, \{c, d\}, X\}$. Then by the definition of regular weakly closed set { ϕ , {c}, {d}, {b}, {b, c}, {b, d}, X}. Here A = {c, d} is $\delta\omega$ - closed set but not regular weakly closed. Theorem 3.11

Every $*g$ -closed set in X is $\delta \omega$ - closed.

Proof: Let A be an arbitrary *g -closed set in the space X. Suppose cl(A) \subseteq U, whenever A \subseteq U and U is semi open X. i.e., whenever A \subseteq U and U is semi open, every weakly open set is open in X. Then by the definition of $\hat{\delta}\omega$ –closed set, if $\sigma c(A) \subseteq$

International Journal for Research in Applied Science & Engineering Technology (IJRASET)

U, whenever A ⊆ U and U is ω open in X. Hence, the arbitrary element A of *g -closed set belongs to U and the arbitrary element A of $\delta \omega$ closed set belongs to U. This implies that A of $\delta \omega$ - closed set in X.

the converse of the above theorem need not to be true, which is verified using following example.

Example 3.11: Let $X = \{b, c, d\}$ be with the topology $\tau = \{\emptyset, \{c\}, \{d\}, \{c, d\}, X\}$. Now if cl(A) $\subseteq U$, whenever $A \subseteq U$ and U is weakly open in X. Then U={ \emptyset , {c, d}, {c}, {b}, {d}, X}. Then *g closed set will be { \emptyset , {b, d}, {b, c}, X}. Here A={c} is a $\delta \omega$ closed set, but not ∗g -closed set in X.

Theorem 3.12

Every θ -closed set in X is $\delta \omega$ – closed set.

Proof: Let A be an arbitrary θ -closed set in space X. Suppose cl_{θ} (A) \subseteq U, whenever A \subseteq U and U is open. i.e., A \subseteq U and U is open. Then by the definition of $\delta\omega$ -closed set, if $\sigma c(A) \subseteq U$, whenever $A \subseteq U$ and U is $\delta\omega$ open in X. Hence, the arbitrary element A of θ -closed set belongs to U and also the arbitrary element A of $\hat{\delta}\omega$ - closed set belongs to U. This implies that, A is $\hat{\delta}\omega$ closed.

The converse of the above theorem is not true, which is verified from the following example.

Example 3.12: Let $X = \{b, c, d\}$ be with the topology $\tau = \{ \emptyset, \{c\}, \{d\}, \{c, d\} \}$

X}. Now if clθ (A) ⊆ U, whenever A ⊆ U and U is open in X. Then θ –closed set will be {ϕ, {b, c}, {b, d}, {b}}. Here $A = \{c\}$ is a $\delta \omega$ - closed set, but not θ -closed set.

Theorem 3.13

Every $\hat{\delta}$ - closed set in X *is* $\hat{\delta}\omega$ - closed set in X.

Proof: Let A be an arbitrary δ -closed set in space X. Suppose cl $\delta(A) \subseteq U$, whenever $A \subseteq U$ and U is open. i.e., $A \subseteq U$ and U is open. Then by the definition $\hat{\delta}\omega$ -closed set, if $\sigma cl(A) \subseteq U$, whenever $A \subseteq U$ and U is ω open in *X*. Hence, the arbitrary element Aof δ -closed set belongs to U and also the arbitrary element A of $\hat{\delta}$ -closed set belongs to U. This implies that, A is a $\delta \omega$ closed.

The converse of the above theorem is not true, which is verified from the following example

Example 3.13: Let *X* = $\{b, c, d\}$ be with the topology $\tau = \{\phi, \{c\}, \{d\}, \{c, d\}, X\}$. Now if cl $\delta(A) \subseteq U$, whenever A \subseteq U and U is open in X. Then δ-closed set will be { ϕ , {b, c}, {b, d}, {b}}. Here A= {c} is a $\delta\omega$ closed set, but not δ –closed.

Theorem 4.1

IV. SOME OPERATIONS ON $\hat{\delta}\omega$ **- CLOSED SETS**

The union of two $\delta \omega$ closed sets of X is also an $\delta \omega$ -closed sets of X.

Proof: Assume that A and B are $\hat{\delta}\omega$ - closed set in X. Let U be open in X, such that A ∪ B ⊆ U. Thus A⊆ U and B ⊆ U. Since A and B are $\hat{\delta}\omega$ – closed set so $\sigma cl(A) \subseteq U$ and $\sigma cl(B) \subseteq U$. Hence $\sigma cl(A \cup B) = \sigma cl(A) \cup \sigma cl(B) \subseteq U$. i.e., $\sigma cl(A \cup B) \subseteq$ UHence A ∪ B is an $\hat{\delta} \omega$ - closed set in *X*.

Theorem 4.2

If a subset A of X is $\hat{\delta}\omega$ - closed in X, then $\sigma cI(A)|A$, A does not contain any non-empty open set in X.

Proof: Suppose that A is $\hat{\delta}\omega$ -closed set in X. Let U be open set such that $\sigma cI(A)\A$ U and U ≠Ø. Now U $\subseteq \sigma cI(A)\A$, i.e., $U \subseteq X\setminus A$ which implies that $A \subseteq X\setminus U$. As U is open, $X\setminus U$ is also open in X. Since A is an $\delta \omega$

 $\delta\omega$ -Closed sets in ideal topological 9closed set in X, by definition of $\delta\omega$ -closed set, we have σcl(A) ⊆ X\U. So U ⊆ $X\setminus \sigmacl(A)$. Therefore U ⊆σcl (A) ∩(X\σcl(A)) = Ø This show that U = Ø, which is contradiction. Hence σcl(A)\A doesnot contain any nonempty open set in X.

Theorem 4.3

For an element $x \in X$, the set $X \setminus \{x\}$ is $\hat{\delta} \omega$ - closed or ω open.

Proof: Let $x \in X$. Suppose $X \setminus \{x\}$ is not ω open. Then X is the only ω open set containing $X \setminus \{x\}$, which means that the only choice of ω open set containing X\ {x} is X. i.e., X\ {x} ⊂ X. Also, we know X\ {x} is not $\delta\omega$ -closed. To prove X\ {x} is open. Suppose X\ {x} is not open. As X\ {x} is a subset of x and X\ {x} only but X\ {x} is not open. Thus the only open set in X. Also $\sigmacl(X \setminus \{x\}) \subset X$. Therefore by the definition of $\delta \omega$ - closed sets $X \setminus \{x\}$ is $\delta \omega$ - closed, which is a contradiction. Hence $X \setminus \{x\}$ is ω open.

Theorem 4.4

International Journal for Research in Applied Science & Engineering Technology (IJRASET)

If A is an $\delta \omega$ -closed subset of X such that $A \subset B \subset \sigmacl(A)$, then B is an $\delta \omega$ -closed set in X.

Proof: Let A bean $\hat{\delta}\omega$ -closed in X, such that $A \subseteq B \subseteq \text{ccl}(A)$. Let U be open set such that $B \subseteq U$, then $A \subseteq U$. Since A is $\hat{\delta}\omega$ closed, we have $\text{ccl}(A) \subset U$. Now as $B \subset \text{ccl}(A)$. So $\text{ccl}(B) \subset \text{ccl}(\text{ccl}(A)) \subset \text{ccl}(A) \subset U$. Thus $\text{ccl}(B) \subset U$, whenever $B \subset c$ and U is ω open. Therefore B is a $\delta \omega$ - closed in X.

Converse of the theorem is not true, which is verified from the following example.

Example4.1:LetX={b,c,d}be with the topology $\tau = \{\phi, \{c\}, \{d\}, \{c,d\}, X\}$ $\delta \omega$ – closed set is{ $\{\phi, \{c\}, \{d\}, \{b\}, \{b,c\}, \{c,d\}, \{b,d\}, X\}$. Now $\sigmacl(A) = \{d\}$ which is contained in each ω open set. $\sigmacl(B) = \{c\}$, which is also contained in each open set. Thus by the definition, A and B both are $\delta \omega$ - closed.

Theorem 4.5

If a subset Aof a topological space X is both ω open and $\delta \omega$ - closed then it is ω closed.

Proof: Suppose a subset A of a topological space in X is both ω open and $\delta \omega$ - closed. Now A⊂ A then by definition of $\delta \omega$ closed we have $\sigma cI(A) \subset A$. So $A \subset \sigma cI(A)$. Thus we have $\sigma cI(A) = \sigma cI(A)$. Finally A is open. Theorem 4.6

If a subset A of a topological space X is both open and $\delta \omega$ - closed then it is closed.

Proof: Suppose a subset A of a topological space in X is both open and $\hat{\delta}\omega$ - closed. Now $A \subset A$ then by definition of $\hat{\delta}\omega$ closed we have $\sigma cI(A) \subset A$. So $A \subset \sigma cI(A)$. Thus we have $\sigma cI(A) = \sigma cI(A)$. Finally A is open.

Theorem 4.7

In a topological space X if open of X are $\{X, \phi\}$, then every subset of X is an $\hat{\delta}\omega$ - closed set.

Proof: Let X be topological space and open. i.e., $\{X, \phi\}$. Suppose A be any arbitrary subset of X, if $A = \phi$ then X is an $\delta \omega$ - closed set in X. If $A \neq \emptyset$ then X is the only open set containig A and so $\sigma cI(A) \subset X$. Hence by the definition A is $\delta \omega$ - closed in X. The converse is not true, which is verified by following example.

Example 4.2: Let $X = \{b, c, d\}$ be with the topology $\tau = \phi$, $\{c\}$, $\{d\}$, $\{c, d\}$, $X\}$, every subset of X is an $\delta \omega$ -closed set in X . Thus for every subset of X is an $\delta\omega$ - closed set, we need not be open set only if {X, ϕ }.

BIBLIOGRAPHY

- [1] M.E.Abd El-Monsef, S. Rose Mary and M.Lellis Thivagar, On G-closed sets in topological spaces, Assiut University Journal of Mathematics and Computer Science, Vol 36(1), P-P.43-51(2007).
- [2] H.Maki, R. Devi and K. Balachandran, Associated topologies of generalized α -closed sets and α -generalized closed sets, Mem. Fac. Sci.Kochi Univ. Ser. A. Math., 15(1994), 57-63.
- [3] J.Dontchev and M. Ganster, On δ -generalized closed sets and T 3/4 -spaces, Mem. Fac.Sci. Kochi Univ. Ser. A, Math., 17(1996),15-31.
- [4] M.Navaneethakrishnan, J. Paulraj Joseph, g-closed sets in ideal topological spaces, Acta Math. Hungar., 119(2008), 365-371.
- [5] M.Navaneethakrishnan, P.periyasamy,s. pious Missier, δ closed sets in ideal topological spaces IOSR journal of mathematics volume 11, issue 1 ver. (janfeb 2015).
- [6] O.Ravi, S.Tharmar, M. Sangeetha, J. Antony Rex Rodrigo, * g -closed sets in ideal topological spaces, Jordan Journal of Mathematics and statistics (JJMS) 6(1), 2013 PP. 1-13.
- [7] M.K.R.S. Veera Kumar, \hat{g} closed sets in topological spaces, Bull. Allah Math.Soc, 18(2003), 99-112.

45.98

IMPACT FACTOR: 7.129

INTERNATIONAL JOURNAL FOR RESEARCH

IN APPLIED SCIENCE & ENGINEERING TECHNOLOGY

Call: 08813907089 (24*7 Support on Whatsapp)