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Abstract - The ternary cubic Diophantine equation (࢞+ (࢟ = ࢟࢞ + ࢠ , is considered for determining its non-zero 
distinct integral solutions employing the linear transformations ࢞ = ࢛ + ,࢜ ࢟ = ࢛ −  and employing the method of ࢜
factorization in complex conjugates in different patterns. 
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I. INTRODUCTION 
Number theory, called the Queen of Mathematics, is a broad and diverse part of Mathematics that developed from the study of the 
integers. The foundations for Number theory as a discipline were laid by the Greek mathematician Pythagoras and his disciples 
(known as Pythagoreans). One of the oldest branches of mathematics itself, is the Diophantine equations since its origins can be 
found in texts of the ancient Babylonians, Chinese, Egyptians, Greeks and so on [7 - 8]. The theory of Diophantine equations is a 
treasure house in which the search for many hidden relations and properties among numbers form a treasure hunt. In fact, 
Diophantine problems dominated most of the unsolved mathematical problems. Certain Diophantine problems come from physics 
problems or from immediate Mathematical generalizations and others come from geometry in a variety of ways. Certain 
Diophantine problems are neither trivial nor difficult to analyze [1 - 6]. In this context one may refer [9, 10].   
In this communication, the non-homogenous ternary cubic Diophantine equation represented by 11(ݔ + ଶ(ݕ = ݕݔ)4 +  ଷ)  isݖ11
considered for its non-zero distinct lattice points. 

A. Pictorial representation of the equation: 

 
 

II. METHOD OF ANALYSIS 
         The ternary cubic Diophantine equation under consideration is 

ݔ)11                                                      + ଶ(ݕ = ݕݔ4 + ଷݖ44                                                                                         
(1) 
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Introduction of the transformations 
ݔ                                                                                              = ݑ + ,ݒ ݕ = ݑ −                                                               ݒ

                 (2) 
in (1) leads to  
ଶݒ                                                                               + ଶݑ10 =                                       ଷݖ11
 (3) 
Equation (3) is solved through different methods and thus, we obtain different patterns of solutions to (1) 

A. Pattern 1: 

Assume   ݖ = ܽଶ + 10ܾଶ,  where  ܽ, ܾ > 0                                                                                                           
(4) 
Write 11 as                                           11 = (1 + ݅√10)(1− ݅√10)                                                               
(5) 
Using (4) and (5) in (3) and employing the method of factorization,   

define                                          ൫ݒ + ൯ = ൫1 ݑ 10√݅ + ݅√10൯൫ܽ+ ݅√10 ܾ൯
ଷ
                                                   

(6) 
Equating real and imaginary parts on both sides of (6), we get 
ݒ                 = ܽଷ − 30ܽଶܾ − 30ܾܽଶ + 100ܾଷ  
ݑ                       = ܽଷ + 3ܽଶܾ − 30ܾܽଶ − 10ܾଷ 
Substituting the values of ݑ,   in (2), we obtain the solutions of (1) as ݒ

ݔ                                            = 2ܽଷ − 27ܽଶܾ − 60ܾܽଶ + 90ܾଷ 
ݕ                                            = 33ܽଶܾ − 110ܾଷ        
ݖ                                            = ܽଶ + 10ܾଶ 

1) Note 1: 

Write 11 as                        11 = (−1 + ݅√10)(−1 − ݅√10)             
Proceeding as above, we obtain 

ݔ                                           = −33ܽଶܾ + 110ܾଷ      
ݕ                                           = 2ܽଷ + 27ܽଶܾ − 60ܾܽଶ − 90ܾଷ                
ݖ             = ܽଶ + 10ܾଶ                                          

B. Pattern 2: 
Equation (3) can be written as  
ଶݒ                                                                                    + ଶݑ10 = ଷݖ11 ∗ 1                                                                                                      
(7) 

Write 1 as                                                              1 = ൫ଷାଶ√ଵ ൯൫ଷିଶ√ଵ ൯
మ

                                                   (8) 
Using (4), (5) and (8) in (7) and employing the method of factorization, 

define,                                                ݒ + ݑ 10√݅ = ൫ଵା√ଵ ൯൫ା√ଵ ൯
య
൫ଷାଶ√ଵ ൯


                                                                               (9) 

Equating real and imaginary parts, we have 

ݒ                                                                                = ൣିଵ൫యିଷమ൯ିହ൫ଷమିଵయ൯൧


 

ݑ =
[5(ܽଷ − 30ܾܽଶ)− 17(3ܽଶܾ − 10ܾଷ)]

7  

Since our interest centers on finding integral solutions, replace ܽ by 7ܣ and ܾ by 7ܤ in the above equations. Thus the corresponding 
solutions to (1) are given by 

ݔ                                             = 7ଶ[−12ܣଷ + ଶܤܣ360 − ܤଶܣ201 +  [ଷܤ670
ݕ                                             = 7ଶ[22ܣଷ + ܤଶܣ99 − ଶܤܣ660 −  [ଷܤ330
ݖ                                              = 7ଶ[ܣଶ +  [ଶܤ10
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1) Note 2: 
Write 11 as                           11 = (−1 + ݅√10)(−1− ݅√10)             
Proceeding as above, we obtain 

ݔ                                                            = 7ଶ[−22ܣଷ + ଶܤܣ660 − ܤଶܣ99 +       [ଷܤ330
ݕ                                                            = 7ଶ[24ܣଷ − ଶܤܣ720 − ܤଶܣ39 +                 [ଷܤ130
ݖ                              = 7ଶ[ܣଶ +         [ଶܤ10

C. Pattern 3: 
Instead of (8) we can also write 1 as  

                                                                         1 = ൫ଷାସ√ଵ ൯(ଷିସ√ଵ )
ଵଷమ

 
Proceeding as above, we obtain the solution as  

ݔ                                                 = 13ଶ[−30ܣଷ + ଶܤܣ900 − ܤଶܣ321 +  [ଷܤ1070
ݕ                                                 = 13ଶ[44ܣଷ + ܤଶܣ99 − ଶܤܣ1320 −  [ଷܤ330
ݖ                                                  = 13ଶ[ܣଶ +  [ଶܤ10

2) Note 3: 

Write 11 as                                                            11 = (−1 + ݅√10)(−1 − ݅√10)             
Proceeding as above, we obtain 

ݔ                                                 = 13ଶ[−44ܣଷ − ܤଶܣ99 + ଶܤܣ1320 +  [ଷܤ330
ݕ                                                 = 13ଶ[42ܣଷ − ଶܤܣ1260 − ܤଶܣ159 +                 [ଷܤ530
ݖ                                   = 13ଶ[ܣଶ +         [ଶܤ10

D. Pattern 4 
 Yet another representation of 1 is  

                                        1 = ൫ଵା√ଵ ൯(ଵି√ଵ )
ଵଽమ

 
Proceeding as above, we obtain the solutions of (1) as 

ݔ                                               = 19ଶ[−52ܣଷ + ଶܤܣ1560 − ܤଶܣ387 +  [ଷܤ1290
ݕ                                               = 19ଶ[66ܣଷ + ܤଶܣ33 − ଶܤܣ1980 −  [ଷܤ110
ݖ                                               = 19ଶ[ܣଶ +                                                                                                                                                                                                                                 [ଶܤ10

1) Note 4: 
Write 11 as                                                         11 = (−1 + ݅√10)(−1− ݅√10)             
Proceeding as above, we obtain 

ݔ                                                 = 19ଶ[−66ܣଷ − ܤଶܣ33 + ଶܤܣ1980 +  [ଷܤ110
ݕ                                                 = 19ଶ[56ܣଷ − ଶܤܣ1680 − ܤଶܣ333 +                 [ଷܤ1110
ݖ                                   = 19ଶ[ܣଶ +         [ଶܤ10
 

III.   CONCLUSION 
In this paper, we have made an attempt to obtain a complete set of non-trivial distinct integral solutions for the non-homogeneous 
ternary cubic equation. To conclude, one may search for other choices of solutions to the considered cubic equation and further 
cubic equations with multi variables. 
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