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Abstract: We analyze the thermo diffusion effect on unsteady convective heat and mass transfer flow of a viscous fluid through a 
porous media in a vertical channel on whose walls a traveling thermal wavy is imposed. The governed equation non-linear 
coupled equation governed the flow phenomena are solved by employing perturbation techniques with ∆ the slope of the 
boundary temperature as perturbation parameter. The effect of dissipation thermo diffusion on the unsteady double different 
heat transfer flow of viscous dissipative fluid is discussed graphically nusslet number shear wood number on the walls ± 1 on 
discussed for a different values of the parameters. 
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I. INTRODUCTION 
The time dependent thermal convection flows have applications in chemical Engineering, space technology etc. These flows can 
also be achieved by either time dependent movement of the boundary or unsteady temperature of the boundary. The unsteady may 
also be attributed due to the free stream oscillations or oscillatory flux or temperature oscillations. . Nelson and wood (5,6). Lee et 
al(3), have presented numerical analysis of developing laminar flow between vertical parallel plates for combined heat and mass 
transfer natural convection with uniform wall temperature and concentration boundary conditions. For along channel (low Rayleigh 
numbers) the  numerical solutions approach the fully developed flow analytical solutions. At intermediate Rayleigh numbers it is 
observed that the parallel plate heat and mass transfer is higher than that for a single plate. Vajravelu and Debnath (12) have made 
an interesting and a detailed study of non-linear convection heat transfer and fluid flows, induced by traveling thermal waves. 
Ravindra (9) has analysed the mixed convection flow of a viscous fluid through a porous medium in  a vertical channel. The thermal 
buoyancy in the flow field is created by a traveling thermal wave imposed on the boundaries. Purushothama Reddy (8) has analysed 
the unsteady mixed convective effects on the flow induced by imposing traveling thermal waves on the boundaries. Nagaraja (4) has  
investigated the combined  heat and mass transfer effects on the flow of a viscous fluid through a porous medium in a vertical 
channel, with the traveling thermal waves imposed on the boundaries while the concentration is maintained uniform on the 
boundaries  Sivanjaneya  Prasad(10) has analysed heat and mass transfer effects on the flow of an incompressible viscous fluid 
through a porous medium in vertical channel. Recently, Sulochana et al (11) have considered the unsteady convective heat and mass 
transfer through a porous medium due to the imposed traveling thermal wave boundary through a horizontal channel bounded by 
non –uniform walls. Tanmay Basak et al(2) have analysed the natural convection flows in a square cavity filled with a porous matrix 
for uniformly and non-uniformly heated bottom wall and adiabatic top wall maintaining crust temperature of cold vertical walls 
Darcy – Forchheimer model is used to simulate the momentum transfer in the porous medium. Yan and Lin (13) have examined the 
effects of the latent heat transfer associated with the liquid film vaporization on the heat transfer in the laminar forced convection 
channel flows. Results are presented for an air-water system under various conditions. The effects of system temperature on heat 
and mass transfer are investigated. Recently Atul Kumar Singh et al (1) investigated the heat and mass transfer in MHD flow of a 
viscous fluid past a vertical plate under oscillatory suction velocity. Convection fluid flows generated by traveling thermal waves 
have also received attention due to applications in physical problems. The linearised analysis of these flows has shown that a 
traveling thermal wave can generate a mean shear flow within a layer of fluid, and the induced mean flow is proportional to the 
square of the amplitude of the wave. From a physical point of view, the motion induced by traveling thermal waves is quite 
interesting as a purely fluid-dynamical problem and can be used as a possible explanation for the observed four – day retrograde 
zonal motion of the upper atmosphere of venus. Also, the heat transfer results will have a definite bearing on the design of oil or gas 
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–fired boilers. 
II. FORMULATION OF THE PROBLEM: 

We consider the motion of viscous, incompressible fluid through a porous medium in a vertical channel bounded by flat walls . The 
thermal buoyancy in the flow field is created by a traveling thermal wave imposed on the boundary wall at y=L while the boundary 
at y = -L is maintained at constant temperature T1. The walls are maintained at constant concentrations. A uniform magnetic field of 
strength H0 is applied transverse to the walls. Assuming the magnetic Reynolds to be small we neglect the induced magnetic field in 
comparison to the applied magnetic field. Assuming that the flow takes place at low concentration we neglect the Duffor effect .The 
Boussinesq approximation is used  so that the density variation will be considered only in the buoyancy force. The viscous and 
Darcy dissipations are taken into account to the transport of heat by conduction and convection in the energy equation. Also the 
kinematic viscosity ,the thermal  conducting  k  are  treated  as constants. We choose a rectangular Cartesian system 0 ( x  ,y )  with 
x-axis in the vertical direction and y-axis normal to the walls. The walls of the channel  are  at y =  L. 
The equations governing the unsteady flow and heat transfer are 

A. Equation of linear momentum 
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B. Equation of continuity     
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C. Equation of energy 
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D. Equation of Diffusion 
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E. Equation of state 
     )()( eeeee CCTT                  (2.6) 

where  e   is the density of the fluid in the equilibrium state, Te,Ce are the temperature and Concentration in the equilibrium 

state,(u,v)are the velocity components along O(x,y) directions, p is the pressure, T ,C are the temperature and Concentration in the 
flow region,is the density of the fluid, is the constant coefficient of viscosity ,Cp is the specific heat at constant pressure,is the 
coefficient of thermal conductivity ,k is the permeability of the porous medium ,D1 is the molecular diffusivity ,k11 is the , is the 
coefficient of thermal expansion,* 

 is the and Q is the strength of the constant internal heat source and qr is the radiative heat flux. 
Invoking Rosseland approximation for radiation 
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Expanding 4T   in Taylor’s series about Te neglecting higher order terms  
  434 34 ee TTTT         
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where  is the Stefan-Boltzmann constant R  is the Extinction coefficient. 
In the equilibrium state 
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where DDe pppp ,  being the hydrodynamic pressure. 

      The flow is maintained by a constant volume flux for which a characteristic velocity is defined as 
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The boundary conditions for the velocity and temperature fields are  
u = 0  , v = 0  ,T=T1     ,C = C1        on y = -L  

22 ,)(,0,0 CCntmxSinTTTvu e       on  y = L                         (2.9)      

 where 12 TTTe   and )( ntmxSin   is the imposed traveling thermal wave 

In view of the continuity equation we define the stream function  as 
          u = - y , v =  x                                                                                  (2.10) 
Eliminating pressure p from equations (2.2)&(2.3)and using the equations governing the flow in terms of  are 
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Introducing the non-dimensional variables in (2 .11 )- (2.13) as   
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The energy equation in the non-dimensional form is  
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The Diffusion equation is 
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The value of  on the boundary assumes the constant volumetric flow in consistent with the hypothesis (2.8) .Also the wall 
temperature varies in the axial direction in accordance with the prescribed arbitrary function t . 

III. ANALYSIS OF THE FLOW 
 The main aim of the analysis is to discuss the perturbations created over a combined free and forced convection flow due to 
traveling thermal wave imposed on the boundaries. The perturbation analysis is carried out by assuming that the aspect ratio    to 
be small. 
We adopt the perturbation scheme and write  
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with 
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IV. SOLUTION OF THE PROBLEM 
Solving the equations (3.13)- (3.24) subject to the relevant boundary conditions  we obtain 
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V. GRAPHS 
 

 
Fig.1 Variation of u with  G                                                        Fig.2   Variation of u with D-1 

D-1 =1×102 , ɑ=2, N=1, SC =1.30,S0 =0.50, EC=0.05 ,                      G=1× 103 , α=2, N=1, SC =1.30,S0 =0.50, EC=0.05,  
M=2  x+ t  = π/4                                                                      M=2  x+ t  = π/4 
          I                      II                        III                       IV                                                                                 I                           II                      III            

G     1×103    3× 103      -1× 103       - 3× 103                          D-1     1× 102       2× 102        3× 102 

   

 
Fig.3   Variation of v with α                                                   Fig.4  Variation of v×102   with N 

D-1 =1×102 , G=1×103, N=1, SC =1.30,S0 =0.50, EC=0.05,                    D-1 =1×102 , G=1×103, α =0.5, SC =1.30,S0 =0.50, EC=0.05, 
M=2 x+ t  = π/4                                                                                    M=2  x+ t= π/4   
                  I                        II                        III                                                                                                                          I                      II                        III                      IV                           
α          2               4                 6                                                                     N          1              2               -0.50         -0.80 

 
Fig.5   Variation Of θ  with  SC                                                                                                  Fig.6   Variation of θ  with  S0 

D-1   =1×102 , G=1×103, α =0.5, N =1,S0 =.50, EC=0.05,                            D-1 =1×102 , G=1× 103, α =0.5, N =1, SC =.1.30,EC=0.05,   
M=2 x+ t  = π/4                                                                                         M=2  x+ t= π/4 
                       I                      II                        III                                                        I                      II                        III           IV            

              SC      1.30          0.60          0.24                                                   S0         0.5           1.00          -0.5        -1.00                                                                                                                  
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       Fig. 7  Variation of c with  EC                                                                                                 Fig.8 Variation of c with x+ t 

D-1 =1×102 , G=2×103, ɑ =0.5, N =1, SC =.1.30, S0=0.50,                  D-1 =1×102 , G=2* 103, α =0.5, SC =1.30,S0 =0.50, EC=0.05,  
 M=2  x+ t= π/4                                                                                  N=1   

                 I                      II                        III                 IV                                                                                     I                          II                             III                     IV                          

 EC       0.07         0.05            0.03       0.01                                      x            π/4               π/2                 π              2π 

                                                     
VI. SHEAR STRESS, NUSSELT NUMBER AND SHERWOOD NUMBER 

The shear stress on the channel walls is given by 
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The local rate of heat transfer coefficient (Nusselt number Nu) on the walls has been calculated using the formula  
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The local rate of mass transfer coefficient (Sherwood number) (Sh) on the walls has been calculated using the formula  
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A. Discussion of The Numerical Results 
we discuss the effect of dissipation and thermo- diffusion on  convective heat and moss transfer flow of a viscous fluid through a 
porous medium in vertical channel on whose walls a traveling thermal wave is imposed. The velocity, temperature and 
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concentration are discussed for different values of G, D-1, α, N, Sc, So, EC and ݔ +  Fig.1 represents variation of u with Grashof.ݐߛ
number ‘G’ .The actual axial flow is in the vertically upward  direction. That is u > 0 is the actual flow and u <0 is the reversal flow. 
It is found that u exhibits a reversal flow in the vicinity of  left boundary y=-1 for G>0 and for G<0 we notice a reversal flow in the 
region (0.4, 0.8) and the region of reversal flow shrinks with increase | G| with  maximum | u| occurring at y=0.6. The variation of u 
with Darcy parameter ‘D-1 ‘ is shown in fig.2.It is found that a reversal flow which occurs at y=-0.8 spreads to the region(-0.8, 0.2) 
and region reversal flow enlargers with increase in D-1.Also lesser the permeability of the porous medium larger  |u| in the flow 
region. The secondary velocity (v) which is due to the traveling thermal wave imposed on the wall is shown in Fig(3-4). An increase 
in the strength of heat source results in a depreciation |v| everywhere in the region(fig3). When the molecular buoyancy force 
dominates  over the thermal buoyancy force the secondary velocity depreciates in the first half and enhances in the second half when 
the buoyancy forces act in the same direction and for the forces in  opposite direction a reversed effect is observed in the behavior of 
|v| (fig.4).The non-dimensional temperature distribution (θ) is shown in figs(.5-6) for  different parametric values. From fig.4  we 
observe that lesser the molecular  diffusivity larger the temperature in the entire flow region. Fig.5 represents the variation of θ  with 
S0 .It shows that an increases in  S0>0  enhances the actual temperature while it depreciates with |S0|.The non-dimensional 
concentration distribution (C) is shown in figs7-8 for different parametric values .We follow the convention that the non-
dimensional concentration is positive or negative according as the actual concentration is greater/ lesser than C2. The variation of C 
with Ec shows that higher the dissipative effects smaller the concentration (fig.31). An increase in the phase x+ ݐߛ of traveling 
thermal wave shows that the actual concentration depreciates at x+ ݐߛ=π/2 ,enhances at x+ ݐߛ=π and again depreciates at x+ 2=ݐߛπ. 
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