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Abstract:  A three layer mathematical model is presented to study the blood flow characteristics using blood fluid as casson’s and 
bingham plastic fluid model. The important characteristics of blood flow such as velocity profile, wall shear stress, and 
volumetric flow rate is calculated. The governing equations used to analyze such flow conditions, should include effect of 
curvature of blood vessels, pulsatile flow in the blood vessel. Numerical expression is calculated for finding the velocity, wall 
shear stress, and volumetric flow rate. Perturbation technique is used to calculate these expressions and matlab programming is 
used to find computational results. The computational results are presented graphically.      
Key words: Stenosed Artery, Non-Newtonian Fluid, Casson’s Fluid Model, Bingham Plastic Fluid Model, Flow Rate, Velocity 
Profile. 

 
I. INTRODUCTION 

Circulatory disorders are known to be responsible for over seventy five percent of all deaths and “Arteriosclerosis” is one of the 
major causes for these. A model for abnormal growth in the lumen of artery is called stenosis, which is developed due to 
intravascular plaques. As the disease advances, it affects severely on the coronary flow rate and perfusion. 

                                   
Fig. 1. (a) Artery with multiple stenosis 

Many theoretical analysis and experimental studies of the flow through stenosis have been performed by Jain et al., [6]. Blood flow 
in the human circulatory system is caused by pumping action of heart, and Shah [12] found an innovative solution for the problem 
of blood flow through stenosed artery using generalized Bingham Plastic fluid model. Pulsatile blood flow in the artery is also 
because of pumping action of heart. This is cause that there are so many researchers studied about the pulsatile flow in the stenosed 
artery. Devajyoti [4] studied the Pulsatile Blood Flow through a Catheterized Artery with an Axially Nonsymmetrical Stenosis. The 
flow of blood through small diameter tubes is of physiological and clinical importance, due to its complexity and anomalous 
behavior, it is difficult to analyze it. Pontrelli [10] found the pulsatile blood flow in small vessels, in simulations in Biomedicine. 
Deville [15] studied the pulsatile blood flow behavior of non-Newtonian fluids through arterial stenosis. To understand the effect of 
stenosis in the lumen artery Srivastava et al., [13] investigated flow of blood through an overlapping stenosis treating blood as non-
Newtonian fluid. There are many researchers [2, 3, 7, 9, 11] studied the two layer model of blood flow. In this series Biswas et al. 
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presented two-layered mathematical model for blood flow inside an asymmetric stenosed artery with velocity slip at interface. 
Gupta et al., [1] presented a three – layer semi-imperical model for flow of blood and other particulate suspensions through narrow 
tubes. 

A.  Formulation of the problem 
Let us consider an axially symmetric, laminar, pulsatile and fully developed flow of blood through a circular cylindrical tube having 
overlapping constriction satisfied at the position as shown in (Fig. 2). The geometry of the stenosis 
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         = 1,                                                                                                                 otherwise 

 
Fig. 2. The geometry of an arterial overlapping stenosis 

Where R(z) and R0 are the radius of the tube with and without stenosis, respectively Rp is the radius of the plug flow region, L0 is 
the length of the stenosis and indicates its location, δ is the maximum height of the stenosis appears at two locations: z=d+L0/6 and 
z=d+5L0/6. The stenosis height at  z=d+L0/2 from origin, called critical height. 

The momentum equation is given by 
ߩ డ௨∗

డ௧∗
= − డ௣∗

డ௭∗
− ଵ

௥∗
డ(௥∗ఛ∗)
డ௥∗

                                                                                                   (2) 
The Casson’s equation describing the non-Newtonian behavior of blood may be written as  

߬∗ଵ/ଶ = ቀ−ߤ డ௨∗

డ௥∗
ቁ
ଵ/ଶ

+ ߬௬
ଵ/ଶ,         ߬∗ > ߬௬                                                                                (3) 
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The Bingham Plastic equation describing the non-Newtonian behavior of blood may be written as  
߬∗ = ߤ− డ௨∗

డ௥∗
+ ߬௬ ,                           ߬∗ > ߬௬                                                                              (5) 

− డ௨∗

డ௥∗
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The theoretical analysis takes care of the two-phase flow of blood, the peripheral plasma layer is considered to be Newtonian, while 
the core region that is supposed to contain all the erythrocytes contained in the blood inside the artery is treated as non-Newtonian. 
The mathematical model that is developed here is formulated by the following set of equations: 
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Along with the boundary conditions 
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∗ݎ at ∗ݑ = ,∗ݖ)∗ܴ  (10)                                                                                                             ,(∗ݐ
߬∗  is finite at ݎ∗ = 0.                                                                                                             (11) 

These equations are to be supplemented by the condition of continuity of ݑ∗  and ݎ∗ at the interfaces ݎ∗ = ܴ଴∗(ݖ∗, ∗ݎ and(∗ݐ =
ܴ௣∗(ݖ∗,   .(∗ݐ
The pressure gradient which is function of ݖ∗ and ݐ∗, is represented as  
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For the analysis presented in the sequel, we use the following non-dimensional variables 
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(14)             
where ݍ଴ is the constant pressure gradient (which is negative). 
In terms of these non-dimensional variables, eq. (2) reads 
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Also u and ߬ have to be continuous at ݎ = ܴ଴(ݖ, ݎ and (ݐ = ܴ௣(ݖ,  (20)              .(ݐ
The volumetric flow rate is given by 

,ݖ)ܳ (ݐ = 4∫ ,ݖ)ݑݎ ,ݎ ோ(௭,௧)ݎ݀(ݐ
଴ .                             (21) 

 
B. Analytical solution of the problem 
Considering the Womersley parameter to be very small, the velocity u, shear stress ߬ as well as ܴ଴ and ܴ௣ can be expressed in the 
following form 

u(z, r, t) = u0(z, r, t) + α2u1(z, r, t) + …                              (22) 
r(z, r, t) = r0(z, r, t) + α2u1(z, r, t) + …                                        (23) 
R0(z, r, t) = R00(z, r, t) + α2R10(z, r, t) + …                            (24) 
Rp(z, r, t) = R0p(z, r, t) + α2R1p(z, r, t) + …                            (25) 
Using (22) and (23) in (15). We have 
డ
డ௥

(଴߬ݎ) =  (26)                                                                                                          (ݐ)݂(ݖ)ݍݎ2 
 
డ௨బ
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 (27)                                                                                                                  (ଵ߬ݎ)
integrating (26) and using the boundary condition (19), we have 
߬଴ = ௣ܴ(ݐ)݂(ݖ)ݍ ,              0 ≤ ݎ ≤ ܴ௣ .                                                                                   (28) 
 

In the regions ܴ௣ ≤ ݎ ≤ ܴ଴ and ܴ଴ ≤ ݎ ≤ ܴ, the continuity of ߬଴ at ܴ଴௣ and ܴ଴଴ yield  
 ߬଴ =  (29)                                                                                                                     .ݎ(ݐ)݂(ݖ)ݍ
 

Introducing (22) and (23) into equations (16) to (18) and equating like powers of α we obtain  
− డ௨బ

డ௥
= 2߬଴ ,    −  డ௨భ

డ௥
= 2߬ଵ,                          if ܴ଴ ≤ ݎ ≤ ܴ.                                                  (30)   
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The boundary condition for u0 and u1 are:    
u0 = 0, u1 = 0      at       r = R                                                    (33) 
u0, u1 are continuous at R00 and R0p. 
From (29), (30) and (32) we have 
u0 = q(z)f(t)(R2 – r2)           R0 ≤ r ≤ R                                                                                   (34) 

Using (3.12) in (3.8) and (3.10), one can find 
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Neglecting the squares and higher power of α in (25) and using (28), one obtains 
ఛబୀఏ|ݎ = ܴ଴௣ = ఏ

௤(௭)௙(௧).                                                                       (37) 

Again, making use of the regularity condition that τ1 is finite at r = 0, equation (35) and (27) as 
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The continuity of τ1 at r = R0p yields 
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Similarly, since ߬ଵ is continuous at R0 , we have 
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Using (33), the equations (30)-(32) give rise to 
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Where,  
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The expression for velocity in the peripheral and core layers can now be calculated by using the equations (22), (34)-(35) and (43)-
(45).  
The volumetric flow rate can be computed from (21) by re-writing it in the form 

,ݖ)ܳ (ݐ = 4 ቀ∫ ,ݖ)ݑݎ ,ݎ ோ೛(ݐ
଴ ݎ݀ + ∫ ,ݖ)ݑݎ ,ݎ ݎ݀(ݐ + ∫ ,ݖ)ݑݎ ,ݎ ோݎ݀(ݐ

ோబ

ோబ
ோ೛

ቁ.                               (47) 

Different expression for u(z, r, t) can to be used for the different regions. 
The value of R00 in (24) is found by using the continuity of u0 at R00. In doing so, we have used the Newton-Raphson method, by 
taking the non-dimensional velocity in the peripheral layer at R00 as its value in the steady case, i.e. 0.03.  
It may be noted that if we write u = u0 + α2u1 and use (34)-(36) and (43)-(45). We find that the right hand side of (47) involves the 
unknown quantity q(z). The quantities Q(z, t) and q(z) in (47) are both unknown. In order to determine q(z) one may choose the 
value of Q(z, t) as its value in the steady state. By considering θ/q(z)f(t) ≪ 1 and using (47), we find  

(ݖ)ݍ = ொೞ
ோర

+ ଵ଺
଻
ቀఏொೞ
ோఱ
ቁ
భ
మ + ଺ସఏ

ସଽோ
, Where R = R(z, t).                (48) 

While computing q(z), one may take Qs = 1.0. After q(z) is determined, Q(z, t) can be calculated from (47).  
    

II. RESULTS AND DISCUSSION 
The volumetric flow rate and the wall shear stress are the two important characteristics in the study of fluid flow through a stenosed 
artery. Using appropriate boundary conditions, analytical expressions for the velocity profile, volumetric flow rate and shear stress 
have been obtained. Where,  
L = 30, L0 = 10, d = 10, θ = 0.05, A = 0.7, δ = 0.1, α2 = 0.049, T = 1.0. 
Fig. 3 to Fig. 4 shows the variation of velocity with radius for different values of time t and amplitude A. It is found that when time t 
is increases then the velocity will also increases. And velocity decreases with the increasing value amplitude. 
Comparision of velocities on the three different region with respect to z is shown in Fig. 5. Where u1 is velocity in the region R0 ≤  r 
≤ R. u2 is velocity in the region Rp ≤  r ≤ R0. u1 is velocity in the region 0 ≤  r ≤ Rp. Fig. 6 depicts the variation of wall shear stress 
with axis z for different values of time t. Wall shear stress increases for the increasing values of time t. It is found that wall shear 
stress first increases for some values of z and then decreases.  Fig. 7 shows the variation of wall shear stress with time for different 
values of θ. It is shown that the wall shear stress increases when time t increases and decreases when yield stress θ increases. Fig. 8 
depicts the variation of wall shear stress with the height of stenosis for different values of time r. wall shear stress increases with 
increasing value of time and also increases for the increasing values of height of stenosis. Fig. 9 depicts the variation of volumetric 
flow rate with time t for different values of amplitude A. Volumetric flow rate is increases for the increasing values of tine t and also 
increases for the increasing values of amplitude A. Fig. 10 shows that variation of volumetric flow rate with axis z for different 
values of time. It is found that  
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volumetric flow rate first increases for some values of z and then decreases. It is also shown in the fig. that the volumetric flow rate 
increases with the increasing values of time t. Fig. 11 depicts the variation of volumetric flow rate with axis z for different values of 
yield stress θ. It  
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is shown in the fig. that the volumetric flow rate first increases for some values of z and then decreases. It is also found that the 
volumetric flow rate increases with the increasing values of yield stress. 

III. CONCLUSION 
In the above discussion, velocity in the three different regions is calculated treating blood as non-Newtonian fluid. It is also found 
that the plug flow velocity and velocity distribution of the two-fluid non- Newtonian model are considerably higher than those of the 
two fluid Newtonian fluid models. In this study it is obtained that the blood velocity decreases with the radial distribution for any 
regions. Wall shear stress and resistance to flow is important characteristics of   blood flow calculated in the present study. It is also 
observed that the wall shear stress and the resistance to flow are significantly very low for the two-fluid non- Newtonian model than 
those of the two-fluid Newtonian fluid model. Comparison of the all these characteristic would be more useful for the further study. 
Hence from all the above discussions we can conclude that a three layer fluid model will affect the flow characteristics and can be 
utilized for medical and engineering applications. 
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