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Abstract: Conventionally invariant embedding approach is used for determination of model discrepancy or error in nonlinear 
dynamic systems. In this paper, a robust approach based on H-infinity (HI) theory is presented. It is combined with the invariant 
embedding (IE) and the algorithms for continuous time and discrete time systems are presented. These estimators are evaluated 
with examples of nonlinear systems implemented in MATLAB. 
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I. INTRODUCTION 
Mathematical modelling and system identification play very significant role in analysis of non-linear dynamic systems. When 
accurate models are not available, the approximate models are used in tracking and data fusion applications, especially in usual 
Kalman filter algorithm [1], which however, cannot determine explicitly the deterministic discrepancy, also called as model error 
[2]. This model error can be accurately determined by using the approach of invariant embedding, in deterministic setting [2].   
In fact, a known (deficient or linear) model is used in the state estimation procedure, and deterministic discrepancy of the model is 
determined, using the measurements in the model error estimation procedure [3-5], assuming the data are from a nonlinear system. 
Once, this model error time history is available, one can fit another model to it and estimate its parameters using regression method; 
then adding the previously used deficient model and the new additional model (from the regression analysis) would yield the 
accurate model of the underlying (nonlinear) dynamic system (which has generated the data in the first place) [6].  
The main aim of the proposed work is to provide a link between estimation of model error by (two-point boundary value problem 
and) using invariant embedding method (TPBVP/IE) and HI norm to arrive at a robust estimator. The method of combined IE and 
H (HI) is discussed for continuous- as well as discrete-time systems. In essence, the robust estimators based on the classical LS 
criterion in HI setting are presented. The performance of these algorithms is illustrated with simulations carried out in MATLAB. 

II. H-INFINITY FRAMEWORK 
The H norm provides a measure of a worst-case system gain. For a stable SISO linear system with transfer function (ݏ)ܩ, the H 
norm is defined as [7]: 

ஶ‖ܩ‖ = max௪|(1)         |(݆߱)ܩ 
or, in the event that the maximum may not exist, it is defined as  

ஶ‖ܩ‖ =  (2)         |(݆߱)ܩ|௪ݑݏ
In (1), |ܩ(݆߱)| is a factor by which the amplitude of a sinusoidal input with frequency ߱ is magnified by the system, and is seen that 
the H norm is simply a measure of the largest factor or gain.  
The H norm can be usefully interpreted in terms of the effect of G on the space of inputs with bounded L2 norms. Let (ݐ)ݒ be a 
signal with Laplace-transform ݒ(ݏ) such that the L2 norm given by ݒ(ݏ) = ∫ ஶݐ௦௧݀݁(ݐ)ݒ

  is bounded. Then the system output 
(ݏ)ݖ̃ =  ,ො‖ଶ becauseݒ‖ஶ‖ܩ‖ has L2 norm which is bounded by (ݏ)ݒ(ݏ)ܩ

ො‖ଶݒܩ‖ = ൫∫ ଶஶ|(ݓ݆)ොݒ(ݓ݆)ܩ|
ஶ ൯ݓ݀

ଵ
ଶൗ        (3) 

= ൫∫ ଶஶ|(ݓ݆)ොݒ|ଶ|(ݓ݆)ܩ|
ஶ ൯ݓ݀

ଵ
ଶൗ         (4) 

≤ ݑݏ
ݓ .|(ݓ݆)ܩ| ൫∫ ଶஶ|(ݓ݆)ොݒ|

ஶ ൯ݓ݀
ଵ
ଶൗ         

=  ො‖ଶ          (5)ݒ‖ஶ‖ܩ‖
Hence, 

ஶ‖ܩ‖ ≥ ‖ீ௩ො‖మ
‖௩ො‖మ

ොݒ ݈݈ܽ, ≠ 0                  (6) 
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Thus, the H norm can be characterised as, 
ஶ‖ܩ‖ = ݑݏ ቄ‖ீ௩ො‖మ‖௩ො‖మ

, ොݒ ≠ 0ቅ                (7) 

The H norm gives the maximum factor by which the system magnifies the L2 norm of any input. Therefore, ‖ܩ‖ஶis also called the 
gain of the system. Let (ݏ)ܩ have the state-space representation 

(ݐ)ݔ̇ = (ݐ)ݔܣ +  (8)         (ݐ)ݑܤ
(ݐ)ݖ = (ݐ)ݔܥ  (9)         (ݐ)ݑܦ+

so that the system transfer function is given as 
(ݏ)ܩ = ܫݏ)ܥ − ܤଵି(ܣ  (10)        ܦ+

The H norm of an error system matrix is given as [7, 8]: 
for continuous system: ‖̃ݖ‖ଶଶ = ଵ

ଶగ
∫ ுஶ(݆߱)ݖ̃
ିஶ ߱݀(݆߱)ݖ̃ = ∫ ுஶ(ݐ)ݖ̃

ିஶ  (11)           ݐ݀(ݐ)ݖ̃

for discrete system: ‖̃ݖ‖ଶଶ = ∑ ∫ ுஶ(݊)ݖ̃
ିஶ ஶ(݊)ݖ̃

ୀିஶ = ଵ
ଶగ

∮∫ ுஶ(ఠ்݁)ݖ̃
ିஶ (ఠ்݁)ݖ̃ ௗ

ೕഘ

ೕഘ
          (12) 

For ܩ௭̂ௗ ݅ݏ the transfer function matrix from the system disturbances to the estimate error; and one has ̃ݖ = ݖ −  ,ෝas estimate error ݖ
and ݀ = ቂ݊ݓቃ as input disturbance [8]. For an H norm criteria, the transfer function (the peak energy gain), from the input 

disturbances to the estimate error, ܩ௭̂ௗ, has a system gain with an upper bound 
௭̂ௗ‖ஶଶܩ‖ <  ଶ          (13)ߛ

The performance bound criterion can also be written as 
௦௨

ฮೢฮమ
మ
ஷ

ǁ௭ି௭̂ǁమమ

[ǁ௪ǁమ
మ]

<  ଶ         (14)ߛ

This criteria represents a family of solutions where the peak gain of the transfer function from the input disturbances to the estimate 
error is less than an upper bound ߛ. Hence, the performance criteria can be rewritten as: 

௦௨

ฮೢฮమ
మ
ஷ

(ǁݖ − −(ǁଶଶݖ̂ ଶฮ௪ฮଶߛ
ଶ

< 0                (15) 

First the approach of IE is briefly discussed, then HI setting is combined with IE and the new robust estimators are presented.  
 

III. INVARIANT EMBEDDING METHOD 
In invariant embedding approach the particular solution that is sought is embedded in a general class and once this general case is 
solved, the particular solution can be obtained by using the special conditions, which have been kept invariant, in final analysis. Let 
the resultant equations from the TPBVP be given as [1, 6] 

ݔ̇ = ,(ݐ))ߣ,(ݐ)ݔ)߶  (16)        (ݐ
ߣ̇ = ψ((ݐ)ݔ, ,(ݐ))ߣ  (17)        (ݐ

The equations (16) and (17) represent the TPBVP with associated boundary conditions as: ߣ(ݐ) = ܽ andߣ൫ݐ൯ = ܾ. Now, though 
the terminal condition ߣ൫ݐ൯ = ܾ and time are fixed, one considers them as free variables. This makes the problem more general, 
which includes the specific problem. It is known from the nature of the TPBVP that the terminal state ݔ൫ݐ൯ depends on ݐ and 
 ൯. Therefore, this dependency can be represented asݐ൫ߣ

(ݐ)ݔ = ,ܿ)ݎ (ݐ = ,(ݐ)ߣ)ݎ  )        (18)ݐ

With ݐ → ݐ +  one obtains by neglecting higher order terms ,ݐ∆
ݐ൫ߣ + ൯ݐ∆ = +൯ݐ൫ߣ ݐ∆(ݐ̇)ߣ = ܿ + ∆ܿ       (19) 

One also gets, using (17) in (19) 
ܿ + ∆ܿ = ܿ + ,൯ݐ൫ߣ,൯ݐ൫ݔ)߰  (20)        ݐ∆(ݐ

and therefore,  
∆ܿ = ,ݎ)߰ ܿ,  (21)         ݐ∆ (ݐ

Additionally, like (19), one obtains  
ݐ൫ݔ + ൯ݐ∆ = +൯ݐ൫ݔ  ݐ∆൯ݐ൫ݔ̇

                                         = ܿ)ݎ + ∆ܿ, ݐ +  (22)        (ݐ∆
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and hence, using (16) in (22), one gets 
൫ܿݎ + ∆ܿ, ݐ + ൯ݐ∆ = ,൫ܿݎ ,൯ݐ൫ߣ,൯ݐ൫ݔ൫ߔ+൯ݐ  ݐ∆൯ݐ

= ,൫ܿݎ ൯ݐ ,ݎ)ߔ+ ܿ,  (23)                     ݐ∆(ݐ
Using Taylor’s series: 

൫ܿݎ + ∆ܿ, ݐ + ൯ݐ∆ = ,൫ܿݎ ൯ݐ +  డ
డ
∆ܿ +  డ

డ௧
 (24)      ݐ∆

Comparing (23) and (24):  
 డ
డ௧

ݐ∆ +  డ
డ
∆ܿ = ,ݎ)ߔ ܿ,  (25)        ݐ∆(ݐ

or, using (21) in (25):  
 డ
డ௧

ݐ∆ +  డ
డ
߰൫ݎ, ܿ, ݐ∆൯ݐ = ,ݎ)ߔ ܿ,  (26)       ݐ∆(ݐ

Equation (26) simplifies to 
 డ
డ௧

+  డ
డ
߰൫ݎ, ܿ, ݐ∆൯ݐ = ,ݎ)ߔ ܿ,  )        (27)ݐ

It is seen that (27) links the variation of the terminal condition ݔ(ݐ) = ,ܿ)ݎ  ) to the state and co-state differential functions, (16)ݐ
and (17), and now in order to find an optimal estimate ݔො(ݐ), one needs to determine ݎ(ܾ,  ) asݐ

൯ݐො൫ݔ = ,ܾ)ݎ  )          (28)ݐ
Equation (27) can be transformed to an initial value problem by using approximation 

,൫ܿݎ ൯ݐ = ൯ܿݐ൫ݏ +  (29)         (ݐ)ොݔ
Substituting (29) in (27):  

 ௗௌ(௧)

ௗ௧
 ܿ +

 ௗ௫ො(௧ )

ௗ௧
+ ,ݎ൫߰(ݐ)ݏ ܿ, ൯ݐ = ,ݎ)ߔ ܿ,  )      (30)ݐ

Next, expanding ߔ and ߰ about ߔ൫ݔො, ܾ, ෝ,ݔ൯ and ߰൫ݐ ܾ,  ൯ to obtainݐ

,ݎ൫ߔ ܿ, ൯ݐ = ,ܾ,ොݔ൫ߔ ൯ݐ ,ܾ,ොݔ௫ො൫ߔ+ ൯ݐ ቀݎ൫ܿ, ൯ݐ −  ൯ቁݐො൫ݔ

= ,ܾ,ොݔ൫ߔ +൯ݐ ,ܾ,ොݔ௫ො൫ߔ  ൯ܿ        (31)ݐ൫ݏ൯ݐ
and 

߰൫ݎ, ܿ, ൯ݐ = ߰൫ݔ,ෝ ܾ, ෝ,ݔ൯+߰௫ො൫ݐ ܾ,  ൯ܿ      (32)ݐ൯ ܵ൫ݐ
After considerable algebraic development, avoided here for brevity [1, 6], one finally obtains the following composite IE based 
estimator:  

ௗௌ(௧)

ௗ(௧)
ܿ +

ௗ௫ො(௧)

ௗ௧
+ ܵ൫ݐ൯[߰൫ݔො,ܾ, ෝ,ݔ൯+߰௫ො൫ݐ ܾ, [൯ܿݐ൯ ܵ൫ݐ = ,ොݔ൫ߔ ܾ, ,ܾ,ොݔ௫ො൫ߔ+൯ݐ  (33) ܿ(ݐ)ܵ ൯ݐ

In (33), c =  ൯, and equation (33) can be separated by substituting the specific expressions for ߶ ܽ݊݀ ߰ in (33); and this is doneݐ൫ߣ
after specifying the dynamic systems for which one needs to obtain the estimators. This is done for the robust algorithms next.   

IV. ROBUST CONTINUOUS TIME ALGORITHM 
The general optimal control problem concerns the minimization of some function (functional) J, the performance index (or cost 
functional). Let the mathematical description of dynamic system be given as 

ݔ̇ = ,(ݐ)ݑ,(ݐ)ݔ)݂  (ݐ +  (34)      (ݐ)݀
(ݐ)ݖ = (ݐ)ݔܪ  +  (35)       (ݐ)ݒ

The basic cost function is given by [9] 
ܬ = ∫ ቂ൫(ݐ)ݖ− ൯(ݐ)ݔܪ

்
ܴିଵ൫(ݐ)ݖ− ൯(ݐ)ݔܪ + ቃ௧((ݐ)݀ܳ(ݐ)்݀)

௧బ
 (36)            ݐ݀

In (36), ݀(ݐ) is the model discrepancy/error to be determined simultaneously with (ݐ)ܴ ,(ݐ)ݔ is the spectral density matrix of noise 
and ܳ(ݐ) is the spectral density matrix of the deterministic discrepancy. In [9], more generalized IE estimators at alpha level were 
presented and evaluated. Here, the similar approach is used, however, the estimators are extended to HI frame work. The cost 
function for the combined approach, the classical least squares (LS) and the HI based is formulated as 

ܬ  = ݖ|| − ଶଶ||ݖ̂  − ଶ||݀||ଶଶߛ        (37) 
Based on (37), (36) can be written as 
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ܬ = ∫ ቂ൫(ݐ)ݖ− ൯(ݐ)ݔܪ
்
ܴିଵ൫(ݐ)ݖ− ൯(ݐ)ݔܪ − ቃ௧((ݐ)݀ܳ(ݐ)்݀)ଶߛ 

௧బ
 (38)           ݐ݀

Let the mathematical description of dynamic system be given as 
ݔ̇ = ,(ݐ)ݔ)݂  (ݐ +  (39)       (ݐ)݀
(ݐ)ݖ = (ݐ)ݔ ܪ  +  (40)       (ݐ)ݒ

In (39), (ݐ)ݔis the state vector, and the control input is dropped, and (ݐ)ݖ is the measurement vector with noise (ݐ)ݒ. The un-
modelled part of the model is represented by ݀(ݐ), which is assumed to be piecewise continuous, and is termed as deterministic 
discrepancy, or model error. The term ݀(ݐ) can be determined using an optimization method by minimizing the cost function J: 

ܬ = ∫ ቂ൫(ݐ)ݖ− ൯(ݐ)ݔܪ
்
ܴିଵ൫(ݐ)ݖ− ൯(ݐ)ݔܪ − ቃ௧((ݐ)݀ܳ(ݐ)்݀)ଶߛ 

௧బ
 (41)               ݐ݀

In (41), the second term is influenced by the H-infinity framework, and ߛ that would yield a robust model error estimator. The 
Lagrange multiplier is used to incorporate the constraint of the system dynamics (39), and the modified cost function is obtained as  

ܬ = ∫ ቂ൫(ݐ)ݔܪ−(ݐ)ݖ൯
்
ܴିଵ൫(ݐ)ݔܪ−(ݐ)ݖ൯ − ((ݐ)݀ܳ(ݐ)்݀)ଶߛ  + −(ݐ)ݔ̇)்ߣ ,(ݐ)ݔ)݂ −(ݐ ቃ௧((ݐ)݀

௧బ
 (42)ݐ݀

From (42), the Hamiltonian is defined as  
ܪ = −(ݐ)ݖ) ൯(ݐ)ݔܪ−(ݐ)ݖଵ൫ି்ܴ((ݐ)ݔܪ − (ݐ)݀ ܳ (ݐ)ଶ்݀ߛ − ,(ݐ)ݔ)݂)]்ߣ (ݐ +  (43)           [(ݐ)݀

= ߰ − ்ߣ ݂((ݐ)݀,(ݐ)ݔ,  (ݐ
In (43) one has  

߰ =  ቀ(ݐ)ݖ– ቁ(ݐ)ݔܪ 
்
ܴିଵ ቀ(ݐ)ݖ– ቁ(ݐ)ݔܪ  −  (44)  (ݐ)݀ܳ (ݐ)ଶ݀ߛ 

By straightforward development paralleling [1,9] (the details are avoided here), one obtains the following equations 

ߣ = ቀఋுೌ
ఋ௫
ቁ = −ቀఋ

ఋ௫
ቁ
்
ߣ + ቀఋట

ఋ௫
ቁ (45) 

ߣ̇ = ቀఋట
ఋ௫
ቁ − ቀఋ

ఋ௫
ቁ
்
ߣ = − ௫݂ො

ߣ் −  ൯                   (46)(ݐ)ݔܪ−(ݐ)ݖଵ൫ି்ܴܪ2
and 

ఋுೌ
ఋ௨

= 0 = −ቀఋ
ఋ௨
ቁ
்
ߣ + ቀஔந

ஔ୳
ቁ                      (47) 

݀ = −  ଵ
ଶ
 (48)                                    ߣଶܳିଵିߛ

Thus, the TPBVP is 
ݔ̇ = ,(ݐ)ݔ)݂  (ݐ  +  (49)       (ݐ)݀
ߣ̇ = −(ݐ)ݖଵ൫ି்ܴܪ2−  ൯(ݐ)ݔܪ − ߣ ௫݂ො

்      (50) 

݀ = − ଵ
ଶ
 (51)        ߣଶܳିଵିߛ

,(ݐ)ݔ)߶ ,(ݐ)ߣ (ݐ = ,(ݐ)ݔ)݂ (ݐ +  (52)     (ݐ)݀
,(ݐ)ߣ,(ݐ)ݔ)߰ (ݐ = ൯(ݐ)ݔܪ−(ݐ)ݖଵ൫ି்ܴܪ2− − ௫݂ො

 (53)    ߣ்
and,  

డఅ
డ௫

= ߰௫ො = ܪଵି்ܴܪ2 − డ
డ௫

( ௫݂ො
 (54)   ߣ(்

௫ොߔ = ௫݂ො            (55) 
The TPBVP results in the composite equation similar to (33); with associated boundary conditions as ߣ(ݐ) = ܽ and ߣ൫ݐ൯ = ܾ. The 
separation of the state estimator and the ‘covariance’ estimator results into  

(ݐ)ො̇ݔ = −(ݐ)ݖ൫(ݐ)ଵܵି்ܴܪ2 ൯(ݐ)ݔܪ + ,(ݐ)ݔ)݂  (56)        (ݐ

ߣ(ݐ)̇ܵ = ௫݂ො
ߣ(ݐ)்ܵ − ߣ(ݐ)ܵܪଵି்ܴܪ(ݐ)2ܵ − ଵ

ଶ
ܳିଵିߛଶߣ + ௫݂ොܵ(ݐ)ߣ + (ݐ)ݏ డ

డ௫ො
൫ ௫݂ො

     ߣ(ݐ)ܵ ൯ߣ்
       (57) 

Dividing (57) by ߣ and setting ߣ ⟹ 0, one obtains  
(ݐ)̇ܵ = (ݐ)ܵ ௫݂ො

் − −(ݐ)ܵܪଵି்ܴܪ(ݐ)ܵ 2 ଵ
ଶ
ܳିଵିߛଶ + ௫݂ොܵ(ݐ)  (58) 

One also gets an explicit expression for model error (discrepancy) as 
መ݀(ݐ) = −(ݐ)ݖଵ൫ି்ܴܪ(ݐ)2ܵ  ൯    (59)(ݐ)ݔܪ

The equation (58) is algebraic matrix Riccati type equation which can be easily solved by the method of transition matrix [1, 9].  
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V. ROBUST DISCRETE TIME ALGORITHM 
Consider a nonlinear system given by 

݇)ݔ + 1) = ݃(ܺ(݇), ݇)      (60) 
(݇)ݖ = ℎ(ܺ(݇),݇)      (61) 

Writing (60), (61) more explicitly with the model error, and measurement noise, one obtains 
݇)ݔ + 1) = (݇,(݇)ݔ)݂ + ݀(݇)     (62) 
(݇)ݖ = ℎ(ݔ(݇), ݇) +  (63)      (݇)ݒ

The model error is estimated by minimizing the cost function criteria  
ܬ =  ∑ ቂ൫ݖ(݇) − ℎ(ݔ(݇),݇)൯்ܴିଵ൫ݖ(݇) − ℎ(ݔ(݇), ݇)൯ − ଶ்݀(݇)ܳ݀(݇)ቃேߛ 

ୀ  (64) 
Using the concept of Lagrange multiplier to handle the constraint within the function J, one obtains 

ܬ =  ∑ [൫ݖ(݇) − ℎ(ݔ(݇),݇)൯்ܴିଵ൫ݖ(݇) − ℎ(ݔ(݇),݇)൯ − ଶ்݀(݇)ܳ݀(݇)]ேߛ
ୀ + ݇)ݔ]்ߣ + 1) − (݇,(݇)ݔ)݂ − ݀(݇)]  

         (65) 
The Euler-Lagrange conditions [1] along with robust scheme yield the final estimator equations as 

݇)ොݔ + 1) = ௫݂ො(ݔො(݇),݇) + 2ܵ(݇ + ݇)்ܪ(1 + 1)ܴିଵ[ݖ(݇ + 1)− ℎ(ݔො(݇ + 1),݇ + 1]   (66) 
ܵ(݇ + 1) = ܫ] + 2ܲ(݇ + ݇)்ܪ(1 + 1)ܴିଵܪ(݇ + 1)]ିଵܲ(݇ + 1)     (67) 

ܲ(݇ + 1) = ௫݂ො(ݔො(݇), ݇)ܵ(݇) ௫݂ො
,(݇)ොݔ)் ݇) − ଵ

ଶ
 ଶܳିଵ     (68)ିߛ

መ݀(݇) = (݇)ݖ]ଵିܴ(݇)்ܪ(݇)2ܵ − ℎ(ݔො(݇),݇)]       (69) 
with ܪ(݇) = ఋ(௫(),)

ఋ௫()
ቚ
௫()ୀ௫ො()

      and    

݀ = − ଵ
ଶ
 (70)        (݇)ߣଶܳିଵିߛ

 
VI. EVALUATION OF THE ALGORITHMS 

Considering the following nonlinear continuous time system [1] 
ܺ̇ଵ(ݐ) = 2.5 cos(ݐ)− 0.68 ଵܺ(ݐ)−ܺଶ(ݐ)− 0.0195ܺଶଷ(ݐ)  (71) 
ܺ̇ଶ(ݐ) = ଵܺ(ݐ)       (72) 

The model error is determined by eliminating the following terms from (71) in turn: (i)   ܺଶଷ(t), (ii) ଵܺ,ܺଶ,ܺଶଷ, and utilizing the 
deficient models in the corresponding estimation algorithm. Then, a regression model is fitted to the discrepancy ݀(ݐ) = ܽଵ ଵܺ(ݐ) +
ܽଶܺଶ(ݐ) + ܽଷܺଶଷ(ݐ) to estimate the parameters of the continuous-time nonlinear system. Values Q=diag(0.001, 30) and R=18 are 
used for this example for achieving convergence. The term  is used that would generate a robust estimator in finding the states of 
the system and the model error. The parameters are estimated from the model discrepancies using LS method. Table 1 shows the 
estimates of the coefficients compared with the true values for the two cases. The estimates compare well with the true values of the 
parameters. It is to be noted that in all the cases, from the estimated model discrepancy, the parameter that is removed from the 
model is estimated. Figure 1 shows the comparison of the simulated and estimated states and Figure 2 shows the comparison of the 
estimated model discrepancies compared with the true model error. The match is very good and it indicates that the model 
discrepancy is estimated accurately by the algorithm. 
Next, considering a nonlinear discrete system [1] 

ଵܺ(݇ + 1) = 0.8 ଵܺ(݇) + 0.223ܺଶ(݇) + 2.5 cos(0.3݇) + 0.8 sin(0.2݇) − 0.05 ଵܺ
ଷ(݇)  (73) 

ܺଶ(݇ + 1) = 0.5ܺଶ(݇) + 0.1 cos(0.4݇)      (74) 
The model error is determined by eliminating the following terms from (73) in turn: (i) ଵܺ

ଷ, (ii)  ଵܺ, ଵܺ
ଷ, and (iii) ଵܺ,ܺଶ, ଵܺ

ଷ. To the 
model error thus estimated, a regression model is fitted: ݀(݇) = ܽଵ ଵܺ(݇) + ܽଶ ଵܺ

ଶ(݇) + ܽଷ ଵܺ
ଷ(݇) + ܽସܺଶ(݇) to estimate the 

parameters of the discrete nonlinear system. 100 samples of data are generated using (73) and (74). It is to be noted that although the 
term containing ଵܺ

ଶ is not present in the true model of the system, it is included to check the performance of the algorithm. Table 2 
shows the parameters estimates compared with the true values for the three cases by introducing HI framework with suitable gamma 
values. The estimates compare very well with the true values of the parameters. It is to be noted that in all the cases, from the 
estimated model discrepancy, the parameter that is removed from the model is estimated. In all the cases, the term ܽଶ is estimated 
with a value, which is practically zero since it is anyway not present in the model. Figure 3 shows the comparison of the simulated 
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and estimated model states. Figure 4 shows the estimated model discrepancy d(k) compared with the true model discrepancies for all 
the cases. The good match indicates good estimation of the model discrepancy. 
 

VII. CONCLUSION 
New estimator algorithms based on the combined approach of invariant embedding and the robust H-infinity frame work for 
continuous time as well as discrete time nonlinear systems are presented. These algorithms also obtain the model errors in nonlinear 
systems. The performances of these estimators are evaluated using numerical simulations carried out in MATLAB. The results are 
found to be very encouraging.  
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Table 1: Nonlinear parameter estimation results-CTS-case (i) and case (ii) 

Case 

Parameter 

ܽଵ 
ଵܺ 

ܽଶ 
ܺଶ  

ܽଷ 
ܺଶଷ 

Terms removed 

True Value 0.68 1 0.0195 - 

(i) 
IE method 

(0.68) (1) 0.0187 

ܺଶଷ 
IE+HI method 
=22.902 

(0.68) (1) 0.0196 

 (ii) 

IE method  

0.5576 0.9647 0.0198 

ଵܺ,ܺଶ,ܺଶଷ 

IE+HI method 
=0.3524 

0.6829 1.0820 0.0197 
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Figure 1: Time history match – states for case (i) and case(ii)  

 

 
Figure 2: Time histories of model discrepancies d(k) case (i) and case(ii) 

 
Table 2: Nonlinear parameter estimation results – Discrete-time system 

Case  Parameter ܽଵ 
ଵܺ 

ܽଶ 
ଵܺ
ଶ

 

ܽଷ 
ଵܺ
ଷ

 

ܽସ 
ܺଶ  

Terms 
removed 

True values 0.8 0 -0.05 0.223 - 
(i) IE method (0.8) -1.03e-5 -0.0498 (0.223) 

ଵܺ
ଷ IE+HI method 

ߛ = 0.5 
(0.8) -0.0000 -0.05 (0.223) 

(ii) IE method 0.7961 -8.3e-6 -0.0498 (0.223) 

ଵܺ, ଵܺ
ଷ IE+HI method 

ߛ = 7.5 
0.8 -0.00 -0.0499 (0.223) 

(iii) IE method 0.8000 -3.07e-7 -0.05 0.2224 

ଵܺ,ܺଶ, ଵܺ
ଷ IE+HI method 

ߛ = 0.2 
0.8 -0.00 -0.05 0.223 
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Figure 3: Time history match-states X1 and X2 

 

 

 

 
 Figure 4: Time histories of model discrepancies d(k)



 


