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Abstract: The current fields of advanced prostheses, exoskeletons, and robotic operation, myoelectric controlled interfaces have 
become recent research area. These recent researches focus on improving initial performance of the user by either training a 
decoding function for a specific user or by implementing “intuitive” mapping functions as decoders. There are however limits in 
both approaches while former being subjective specific, and the latter task specific. This paper proposes an anomaly on the 
myoelectric interfaces by embedding the human to act as controller to operate the system. 
The studies also show that human subjects are able to control an artificial system with more efficiency by learning the usage of 
abstract mapping functions between myoelectric activity and control actions for every specific task. The method efficacy is tested 
by using two different control tasks and four different abstract mappings relating upper limb muscle activity to control actions 
for those tasks. This suggests that new muscle synergies are developed and refined relative to the mapping used by the control 
task, so that maximum performance can be achieved by learning a constant, arbitrary mapping function rather than dynamic 
subject- or task-specific functions. Furthermore the results also imply that the method may extend to the neural control of any 
device or robot, without limitations in human-related counterparts. 
Index Terms: Electromyography, human-robot interaction, motor learning, myoelectric control, real-time systems. 

I. INTRODUCTION 
In recent days myoelectric controlled interfaces have become a major research area due to their various applications. Due to recent 
advances in EEG and EMG signal’s analysis and processing the researchers are able to research on reliable access to brain and 
muscle activity thereby developing a connection between electromechanical systems and humans by developing prosthetics[1]. This 
technology offers hope to help amputees regain independence and humans to perform tasks beyond their physical capabilities [5]–
[7], and robotic devices and machines to be teleoperated with precision [8]–[13]. The challenge in myoelectric interfaces lies in 
using neural signals as commands for operating desired application. Many decoding algorithms have been developed using machine 
learning techniques, but these currently suffer from subject specificity and require intense training phases before any real-time 
application is feasible [14]–[17]. Other approaches have implemented simple decoders meant to be instinctive for users to control 
simple commands, but these intuitive mappings lack task specificity. In both cases, the decoders are designed to maximize the initial 
performance of the user, which does not take advantage of a human’s natural ability to form inverse models of space [20], [21], 
optimize control strategies [22], [23] and learn new muscle synergies [24] while completing precise physical tasks. Thus, these 
approaches do not necessarily provide a foundation for maximal performance over time. Before presenting the novelty of the 
proposed technique, it is useful to give the definitions of two concepts that will be frequently used in the paper. 
Control task: task executed by subject using the myoelectric interface, implying both the device to be controlled (e.g., a robot hand) 
as well as its possible functions (e.g., open/close fingers etc.); 
Mapping function: mathematical function that maps myoelectric activity to control actions for the task, e.g., a function that will 
translate myoelectric signals to opening the fingers of a robot hand. 
A new theory has been proposed by mapping functions between neural activity and control actions. This paper shows performance 
of user for myoelectric interfaces and arbitrary mapping functions which were neither designed for the subject nor the task. A user-
specific decoder is not required for myoelectric interfaces, as arbitrary mapping functions can be learned without need for intuitive 
mappings. It can even be proved that muscle synergies developed from certain mapping function can be saved for performing new 
tasks.  
Using EMG signals four distinct mapping functions can be done. The EMG signals are collected from biomechanically independent 
pairs of antagonistic muscles to encourage flexible control of the task space [24] and avoid low-level habitual synergies that have 
been shown to hinder user control of the task space [29]. Evaluating user control for a given trial consisting of a single task, using a 
specific mapping function, provides information about learning and inferred muscle synergy development. Chronological evaluation 
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of all trials then provides information about the influence of previous trials on performance and reveals a transfer of learning 
significantly dependent on the previous use of a given mapping function. 

II. RELATED WORK 
Decoding neural signals has been the main research focus for improving performance of myoelectric controlled interfaces since their 
first implementation in the 1970s.Since that time, many algorithms have been developed to train a decoder specifically for a given 
user. Machine learning techniques are used to develop a specific decoder based on a set of training data. Classification techniques 
are commonly used for a discrete set of commands. For continuous commands, black-box modeling and regression methods are 
most common. However, studies by Ajiboye et al. have suggested that only a sparse set of natural muscle synergies are user-
independent and form a low-level basis for muscle control. Héliot et al. assume a model of the brain to convert firing neurons to 
common center to reach out tasks. The algorithm consists of a decoding function, inverse model, and feedback controller. This 
model simulates how the brain modifies neural signals based on output error in order to develop the inverse model of the decoding 
function. The simulation confirms that the system is able to update the inverse model in order to minimize the error. 
Two decoders, classified as intuitive and nonintuitive, decode EMG signal amplitude from eight muscles to generate a 2-D cursor 
position. The intuitive decoder maps six of the eight muscles to a vector along the 2-D plane that is most consistent with the action 
on the limb when the muscle contracts. The nonintuitive decoder maps six of eight muscles randomly along equally spaced vectors 
in the 2-D plane. Subjects are able to learn the decoders in both experiments, with performance trends best fit by exponential decay. 
Additionally, the results show that the intuitive decoder helps subjects achieve better performance initially, but the nonintuitive 
decoder has a steeper learning rate that made performance for both decoders almost equal after 192 trials. The first task is a standard 
cursor control task, similar to the second uses similar mapping function, but with removed redundancies such that each muscle 
operates individual fingers of a robotic hand. The mapping function is intentionally made non intuitive to users in order to 
emphasize a steeper learning curve. The results show similar performance trends when given visual feedback for both cursor control 
and hand control, indicating that subjects are able to learn separate models to effectively reach the goal in both tasks. This previous 
research has established that humans are capable of forming inverse models for various decoders when presented with closed loop 
feedback. Although intuitive decoders give better initial performance, other decoders with worse initial performance are capable of 
higher learning rates. This suggests that humans while learning to perform a task with a novel control space, tend to explore the full 
space in order to form a complete inverse model. DeRugy et al. indicate limitations for discovering this inverse model when dealing 
with biomechanically dependent muscles. They show that habitual synergies between biomechanically dependent muscle groups 
controlling wrist forces make exploration of novel control spaces and corresponding new synergy formation difficult. Conversely, 
Nazarpour et al. demonstrate that the use of biomechanically independent and antagonistic muscles removes this restriction and 
allows formation of new synergies while exploring the full task space. The study presented in this paper expands this work of 
understanding human motor learning by investigating the performance impact of previously learned mappings on new control tasks 
and interfaces using antagonistic and biomechanically independent sets of muscles to ensure proper exploration of the task space 
can be performed while learning. 

III. METHODS 
A. Experimental Setup 
The experiments performed in this study are designed to evaluate the effect of new control tasks with common mapping functions 
on human motor learning. In the experiment, wireless surface EMG electrodes (Delsys Trigno Wireless, Delsys Inc.) obtain EMG 
signals from four upper limb muscles of a human subject. A multifunction data acquisition card (DAQ) (USB-6343X, National 
Instruments) acquires and digitizes the signals for input to a custom application running on a personal computer (PC). The EMG 
signals are processed in real time and converted to control variables for a given task via a mapping function, and the effect is 
displayed to the subject for online closed-loop visual feedback. The program is written in C++ using OpenGL API [38] for the 
graphical display. 

B. Control Tasks 
The two tasks tested in these experiments are shown in Fig. 1. Task 1 is a standard center to reach out task, where the subject needs 
to control the center (red) circle and move it on top of one of eight possible target (green) circles as fast as possible. The eight target 
locations (blue circles) are symmetrically distributed around the four quadrants of the circle with respect to an origin at the center of 
the screen, and each quadrant represents a target area. 
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Task 2 consists of two rectangular objects, with a straight line bisecting one edge of each object to provide orientation, as shown 
inFig.1.Thegoalof the task is to control the red object by resizing and orienting it to match the stationary green one. Similarly to 
Task 1, there are eight possible combinations of size-orientation for the green object. Each combination maps along the control axes 
(see SectionIII-C)equivalently to the target locations in Task 1. Those eight targets are similarly grouped to four target areas 
equivalent to the four quadrants of a circle. 

 
Fig. 1. Experimental setup including EMG system, DAQ, and the visual interface (top). Two tasks the subjects were asked to control 

using their EMG signals (bottom). 

C. Mapping Functions 
Myoelectric signals are obtained from four different muscles of the arm which are namely: 1) Biceps Brachii (BB); 2) Triceps 
Brachii (TB); 3) Flexor Carpi Radialis (FCR); and 4) Extensor Carpi Ulnaris (ECU). Following the findings from [24] that muscle 
synergies were quickly developed between both antagonistic and biomechanically independent muscles, and [29] that habitual 
synergies between biomechanically dependent muscles are difficult to alter, these four muscles were specifically chosen as two pairs 
of antagonistic muscles (BB/TB and FCR/ECU) which are biomechanically independent in order to enhance the potential for new 
synergies. The signals are sampled at 1 kHz frequency by the DAQ. The raw EMG signals undergo a preprocessing stage that is 
commonly used in the field of electromyography in order to compute the linear envelope of the signal [35]. The linear envelope 
performs full-wave rectification of the raw signals and then passes them through a low pass filter (second-order Butterworth, cutoff 
frequency of 8 Hz). The smoothed signal provides a reliable input signal to the mapping function for each trial. 

 
Fig. 2. Mapping of input EMG amplitudes to two output control axes using the four mappings functions defined in. 

Each of the mapping functions transforms the EMG amplitude to control variables in a unique way that can be represented visually 
as vectors in the 2-D control space, as shown in Fig. 2 The control axes correspond to the velocity of the moving circle along the 
(horizontal) and (vertical) direction in the case of Task 1. For Task 2, the two control axes correspond to the angular velocity and 
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change in size of the rectangle. An activation threshold of 0.02 mV was set for each of the muscles, so as to make sure that there is 
no control output when the subject is resting. The mapping function was designed to be the most intuitive for the subjects, according 
to [27]. Each set of antagonistic muscles (BB-TB and FCR-ECU) maps to only one of the two control axes required for the task. The 
mapping functions and were designed such that a combination of two muscles was required to command along one control axis 
direction. The mapping function is a random matrix with arbitrary weights given to each muscle, normalized with zero mean so that 
there is no output at rest. 
It should be noted that the subject’s arm is not constrained, and muscular volume contraction (MVC) is not used to normalize the 
EMG signals, which differs from most other relevant studies [24], [27]–[29]. Instead of using position control with respect to MVC, 
subjects are free to move their arm into any configuration to fully explore each mapping and minimize the effect of potential 
biomechanical constraints in a given configuration. It is hypothesized that with this freedom in forming the inverse model, subjects 
can learn to respond and adjust appropriately to a un normalized output when performing velocity control. Also by ignoring MVC, 
trends in performance over multiple days are inclusive of the performance-diminishing impact of intra subject variability caused by 
sensor placement, and conclusions are robust to these sensitivities. 

IV. RESULTS 
At the end of the experiments, qualitative assessment showed that all subjects considered Task 1 to be easier than Task 2 and found 
some mapping functions easier than others. However, none were aware that both tasks required the same input responses, though 
some noticed that a few of the trials required similar muscle activity to move the virtual objects. Quantitative evaluation of learning 
and performance is done in three steps. 
Confirm that learning occurred in the trials for each target area. 
Quantify the effectiveness of prior learning transfer to subsequent trials. 
Evaluate the overall performance of subjects when presented with each mapping function. 

A. Learning 
 The foremost step is to identify how well subjects learn to perform the given task successfully. For this, each target area of each 
trial is plotted chronologically according to the specific set of targets used in the trial. Following results from prior work [27], the 
general trend of learning is expected to follow an exponential 
decay, where initially the time required to successfully performing any task is high and it decreases exponentially towards a final 
steady-state value. For that reason, the data from each trial is fit to an exponential curve and the time constant of the curve gives the 
learning rate. The higher the time constant is the more the learning rate. 

B. Learning Transfer 
The next main aspect is to compare how well learning is transferred across mapping functions for each control task (Case 1) and 
across control tasks for each mapping function (Case 2). This is to identify whether the subject is learning to interact with each 
individual control task better irrespective of the different mapping functions, or whether the subject is learning to understand the 
controls of each individual mapping function irrespective of the control tasks. For a representative subject, two plots are generated 
to evaluate learning transfer (see Fig. 4). The first plot (Case 1) contains the time plots in log scale, stacked side by side in the order 
in which a single task was performed, for each of the command sets (mapping functions). 
The second plot (Case 2) contains the time plot in log scale, stacked side by side in the order in which a single command set 
(mapping function) was used, for each of the tasks. The important thing to observe in these figures is how smooth the transition 
occurs between the learning curve of one experiment to that of the next one in both cases. In order to quantify the smooth transition 
factor, a transition index is generated for each of the plots. In this manner, two indicators are combined. 
1) Root mean squared error (RMSE) between the straight lines fitted over the entire data (includes the respective trials stacked side 
by side) and the straight line fitted over each individual trial, as shown in Fig. 4. The lower the value the better each individual line 
fits the overall line. 
2) Mean gap (MG) which measures the mean difference between the coordinates of the end point of one trial’s best fit line and the 
start point of the subsequent trial’s best fit line, for all respective trials. The lower the value  is the more continuity between the 
successive trials function was presented and retain this learning for at least 24 hours to be able to apply and refine the learning in a 
completely different task. Moreover, becoming familiar with the specific task did not help subjects achieve better performance when 
it was presented with a new mapping function, forcing new motor learning. This demonstrates that performance for myoelectric 
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interfaces is therefore more dependent on a familiar mapping function than a familiar task. These results imply that a constant 
mapping function is better than one that is implemented for or adapts to specific tasks, and mapping functions may be generalized to 
new tasks while maintaining subject performance from prior training. 

 
Fig. 4. Example learning transfer plots to evaluate the transition index. Top plot shows poor transfer in Case 1, while the bottom plot 

shows better transfer in Case 2. This is consistent with the quantitative results from the transition index. 

C. Overall Performance 
Due to the significance of consistent mapping functions on learning transfer (Case 2), overall performance evaluation is quantified 
with a performance score incorporating learning transfer, learning rate, and end performance specifically for each mapping function. 
Each of these three quantities are deemed important components for evaluating how well users can interact with a given mapping 
function. Then, this score can be compared with initial performance, or intuitiveness of a mapping function, which is given by the 
start point of the best fit line for the first trial using the specified mapping. This can be visualized in Fig. 4, bottom plot. The 
intuitiveness is measured by the left-most point on the black line (the initial performance on the first trial). The learning rate is 
measured by the slope of the magenta line (best fit over all trials). The performance score is measured by equally weighting end 
performance, learning rate, and transition index. Learning rate and transition index are considered because it is important that a 
mapping function should be quickly learned and easily transferred to new tasks in a dynamic environment 

V. CONCLUSION 
This paper investigates the role of mapping functions in myoelectric controlled interfaces. It is shown that subjects are not only able 
to learn the inverse model of arbitrary mapping functions, but more importantly are capable of generalizing this model to enhance 
performance on new control tasks containing similar mapping functions. Performance is determined to be more dependent on 
familiarity with a given mapping function 
than familiarity with a given control task, indicating that subjects can learn new control tasks so long as they know how to explore 
the task space. This control is robust to variability caused by small changes in sensor placement that occurred while performing the 
experiment over multiple days. These findings imply that subjects are able to develop and refine muscle synergies for a given 
mapping function which enables them to explore the task space more efficiently. As mentioned in [24], the synergy development is 
enhanced by the choice of two pairs of antagonistic muscles, with each pair biomechanically independent. Including 
biomechanically dependent muscles, such as in [29], would likely hinder a subject’s ability to learn these synergies due to low level 
mechanical restraints. The study also reveals that the specific choice of mapping function may not be as relevant as previously 
emphasized in the literature. Even though mapping appears to be the most intuitive for a majority of the subjects, the best overall 
performance occurs using the randomly generated mapping, and end performance for all mapping functions is more similar than the 
large discrepancies in initial performance. The contribution of this paper is twofold: 1) it provides evidence that a user-specific 
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decoder is not required, as long as the subject can learn a mapping function between the neural activity and the task commands and 
2) it demonstrates that subjects do not only learn those mappings between their actions and the control task, but they can retain this 
ability and generalize it to different control tasks. These two findings support the idea of the human embedded control of devices 
using myoelectric interfaces, which can result in a paradigm shift in the research field of neuron prosthetics. More specifically, we 
have shown that humans can be trained to control different tasks by using their muscular 
activity directly to the control axes of the tasks (i.e., embedded control). The implications of this method are vast, since it means that 
humans are able to control any device, without the latter being anthropomorphic or resembling any of the human counterparts. 
Instead of training decoders for specific humans, humans can be trained for specific decoders, which may then generalize to a 
myriad of myoelectric interfaces. Tackling these problems of user specificity and extensive decoder training that cannot generalize 
to new tasks opens new avenues and capabilities for the intelligent control of neuron prostheses. 
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