) iJRASET

& International Journal For Research in
Applied Science and Engineering Technology

INTERNATIONAL JOURNAL
FOR RESEARCH

IN APPLIED SCIENCE & ENGINEERING TECHNOLOGQGY

Volume: 1 Issue: v Month of publication: November 2013

DOI:

www.ijraset.com
Call: (£)08813907089 | E-mail ID: ijraset@gmail.com

Vol. 1 Issue IV, November 2013
ISSN: 2321-9653

www.ijraset.com

INTERNATIONAL JOURNAL FOR RESEARCH IN APPLIED SCIENCE
AND ENGINEERING TECHNOLOGY (IJRASET)

The Role of Software Engineering Ontology
Model & Design for Multi-Site Software
Development

Komal®
Asst. Prof, Dept. Of CSE?,
Sri Venkateswara Engineering College?
Piplikhera, Sonepat, Haryana-131039°
komal.it07517 @gmail .com?

V. Saritha’

Assco. Prof., Dept. Of CSE®
Sri Kavitha Engg. College®
Karepalli, Khammam-5071223
saritha.vaddeboina@gmail .com®

Kalyana Chakravarthy Dunuku®
HOD, Dept. Of CSE",
Sri Venkateswara Engineering College',
Piplikhera, Sonepat, Haryana-131039".
kc7610@gmail.com®

ABSTRACT: Ontology isimportant concept for software engineering to formally represent knowledge in a way software can
process the knowledge and reason about it. The software engineering ontology assists in defining information for the
exchange of semantic project information framework. This paper gives an analysis of what software engineering ontology
model is, what it consists of and what it is used for in the form of usage example scenarios. The usage scenarios presented in
the paper highlight characteristics of the software engineering ontology model and design in UML. The software
engineering ontology assists in defining information for the exchange of semantic project information and is used as a
communication framework. Its end users are software engineers sharing domain knowledge as well as instance knowledge
of software engineering.

Keywords:- Software Engineering, Ontology Development, Multi-site Software Development Knowledge Sharing and

Knowledge Engineering.

1 INTRODUCTIONS.

Having redlized the advantages of multi-site software
development, major corporations have moved their software
development to countries where employees are on
comparatively lower wages. It is this imperative of financial
gain that drives people and businesses to multi-site
development and the Internet which facilitates it. Software
development has increasingly focused on the Internet which
enables a multi-site environment that allows multiple teams
residing across cities, regions, or countries to work together in
a networked distributed fashion to devel op the software.

The development of the software in various fields, have
become more cushy and comfortable. Realizing the pros of
multisite software development, major MNC’s and the
corporate sectors have moved their business to the countries
where the employees work for curtail and pare saaries.
Software development has increasingly focused on the

Page 20

Internet, which enables a multisite environment that allows
multiple teams residing across cities, regions, or to countries
to work together in network distributed fashion to develop the
software. However, the effective communication and
coordination across multiple sites is extremely important for
the global software development. Team members, team
leaders and the managers who carry out, control, manage
different tasks and activities respectively may not be located
at the same site in a multisite environment.

Consider a scenario of a software development process
where the team members work in a particular site and the
person who manage them, their team leader is at different site
who controls them and collects, integrates the completed
modules for further enhancement of the software project.

As the team completes their respective module and send
the same to the team leader. They draft in their own form of
representations for conclusions on the completed module with

www.ijraset.com

Vol. 1 Issue IV, November 2013
ISSN: 2321-9653

INTERNATIONAL JOURNAL FOR RESEARCH IN APPLIED SCIENCE
AND ENGINEERING TECHNOLOGY (IJRASET)

respect to their culture, customs and tradition which they
follow in their day to day life. It is obvious that they might
have not come face to face and never met as they work online.
So, strict software engineering principles should be followed,
to have a better communication among the teams and the team
members.

The incongruity in analysis, design, documentation,
presentation, and diagrams could prevent proper access by
other stake holders in a particular software project. Seldom
issues of this kind are kept enigmatic. In reference to the
above discussed problems, the software engineering has a
commonly understood body of knowledge and is an easily
learnt subject that includes some of the latest technology and
methodology that is easily adopted. As the teams at different
sites refer to various texts in the same software engineering
domain, each individual have a personal guide and when they
communicate with each other their terminology could be quite
startling and unusual. This leads to inconsistency and
equivocation among the teams. Communication is the real
challenge that everyone face in their daily life and the
affective communication is an important pat of a
successful business. Ontology is an important part of
developing a shared understanding across a project to lessen
the problems.

1. ONTOLOGY IN SOFTWARE ENGINEERING

The term “‘Ontology’ is derived from its usage in
philosophy where it means the study of being or existence as
well as the basic categories [1]. Therefore, in this field, it is
used to refer to what existsin a system model. An ontology,
in the area of computer science, represents the effort to
formulate an exhaustive and rigorous conceptual schema
within a given domain, typicaly a hierarchical data structure
containing al the relevant elements and their relationships and
rules (regulations) within the domain [2].

An ontology, in the artificial intelligence field, is an
explicit specification of a conceptualisation [3, 4]. In such an
ontology, definitions associate the names of concepts in the
universe of discourse (e.g. classes, relations, functions) with a
description of what the concepts mean, and formal axioms that
constrain the interpretation and well-formed use of these terms
[5]. For example, by default, all computer programmes have a
fundamental ontology consisting of a standard library in a

Page 21

programming language, or files in accessible file systems or
some other list of ‘what exists’.

However, the representations are sometimes poor for
certain problem domains, so more specialised schema must be
created to make the information useful and for this we utilise
ontology. An abstract view of representing the software
engineering knowledge is shown in Fig. 1. The whole set of
software engineering concepts representing software
engineering domain knowledge is captured in ontology. Based
on a particular problem domain, a project or a particular
software development probably uses only part of the whole set
of software engineering concepts. The specific software
engineering concepts used for the particular software
development project representing software engineering sub-
domain knowledge are captured in ontology. The generic
software engineering knowledge represents all software
engineering concepts, while specific software engineering
knowledge represents some concepts of software engineering
for the particular problem domain.

The actual content and the domain are represented
in the fig 2 with Semantic and the Pragmatic representations
respectively. The content in the semantics (Actual meanings)
area can be Stuff, Things, and Relationships. The Domains in
the pragmatic (Dealing or concerned with facts or actual
occurrences) area can be Knowledge domain, Applications
domain, and Functional domain. Combining both the Content
and the Domain knowledge forms the basis for the Ontology.
A simple and very regular ontological representation can be a
standard library in a programming language environment
which has all the methods, attributes, classes and packages
that gives the answer for the preliminary question of “What
Exists” in a programming language..However, some
Representations may be poor due lack quality in design,
implementation.

For example, if a project uses purely object-
oriented methodology, then the concept of a data flow
diagram may not necessarily be included in specific concepts.
Instead, it includes concepts like class diagram, activity
diagram and so on. For each project in the developmental
domain, there exists project information or actual data
including project agreements and project understanding.

www.ijraset.com

Vol. 1 Issue IV, November 2013
ISSN: 2321-9653

INTERNATIONAL JOURNAL FOR RESEARCH IN APPLIED SCIENCE
AND ENGINEERING TECHNOLOGY (IJRASET)

The project information especially meets a particular project
need and is needed with the software engineering knowledge
to define instance knowledge in ontology. Note that the
domain knowledge is separate from instance knowledge. The
instance knowledge varies depending on its use for a
particular project. The domain knowledge is quite definite,
while the instance knowledge is particular to the problem
domain and developmental domain in a project. Once all
domain knowledge, sub-domain knowledge and instance

A Sl O Soflwsas o
enginesnng concepis

engineering concep:s

Aol ol soancilic Sofleea o

knowledge are captured in ontology, it is available for sharing
among software engineers through the I nternet.

All team members, regardless of their location, can query the
semantically linked project information and use it as the
common communication and knowledge basis for raising
discussion matters, questions, analysing problems, proposing
revisions or designing solutions and the like.

Fregeasl infoamniind
— | Skt §= Pt Froducts.
| (i Bcjosiel {Tavaiog- |l Software
i T e '4:3— Concapts B omme Projecidd —— e :
PP - T ™ _(_knmr. [T | Solwam,
trpr P n? = e— Fompi st
B i@ 1 Sys=ms
i O}i» o = =t
| 158 F—
. = @ 5w
Al Ciamain = Sk Daesais 5E namnoo
il s Knossesd o Bl b
L o ';1—Q”PJ e _rénﬁ'\
U_T"-. > o —_— { o0 ! ! El)
o ;5. e MO S
el o 3
Siofrarmrn Eng inencing Snialogy

Fig.1 Schematic overview of software engineering knowledge representation.

Semuantic

Farnalizes

“FHrem

b stnis lejes

Praz=misiic

Fig.2 Ontology with its ‘Content’ and the ‘Domain’ Concepts

Page 22

www.ijraset.com

Vol. 1 Issue IV, November 2013
ISSN: 2321-9653

INTERNATIONAL JOURNAL FOR RESEARCH IN APPLIED SCIENCE
AND ENGINEERING TECHNOLOGY (IJRASET)

Software engineering domain knowledge constructs
should be sought in ontology, a well-founded model of reality.
Ontology is used to analyse the meaning of common
conceptual modelling constructs [6] which accurately reflect
the world. The notion of a concrete thing applies to what
software engineers perceive based on software engineering
domain knowledge. In this light, the notion of ontology is a
solution for software engineering knowledge representation.
When the knowledge of the software engineering domain is
represented in a declarative formalism, the set of software
engineering concepts, their relations and their constraints are
reflected in the representation which represents knowledge.
Thus, the software engineering ontology can be defined by
using a set of software engineering representational terms.
Then a conclusion from the knowledge of what is can be
determined.

In order for the software engineering domain
knowledge to be shared amongst software engineers or
applications, agreement must exist on the topics about which
information is being communicated. The issue of ontological
commitment is described as the agreement about concepts and
relationships between those concepts within ontology [4].
When the software engineering ontology is committed, it
means agreement exists with respect to the semantics of the
concepts and rel ationships represented.

The main purpose of the software engineering ontology is to
enable communication between computer systems or software
engineers in order to understand common software engineering
knowledge and to perform certain types of computations. The
key ingredients that make up the software engineering ontology
are a vocabulary of basic software engineering terms and a
precise specification of what those terms mean. For software
engineers or computer systems, different interpretations in
different contexts can make the meaning of terms confusing
and ambiguous, but a coherent terminology adds clarity and
facilitates a better understanding. Software engineering
ontology has specific instances for the corresponding software
engineering concepts. These instances contain the actual data
being queried in the knowledge-based applications..

2. SOFTWARE ENGINEERING ONTOLOGY
MODELLING

Page 23

Various formalisms have been developed for
modelling ontologies, notably the Knowledge Interchange
Format (KIF) [7] and knowledge representation languages
descended from KL-ONE [8]. However, these representations
have had little success outside Artificial Intelligence (Al)
research laboratories [9, 10] and require a steep learning
curve. KIF provides a Lisp-like syntax to express sentences of
first order predicate logic and descendants of KL-ONE
include description logics or terminological logics that
provide a formal characterisation of the representation [11].
Traditionally, Al knowledge representation has a linear
syntax.

There have been recent efforts, documented in the
literature [12-14], to use UML for ontology modelling. In
UML, ontology information is modelled in class diagrams and
Object Congraint Language (OCL) constraints [13].
However, there is controversy regarding whether or not
ontology goes beyond the standard UML modelling, so that
standard UML cannot express advanced ontology features
such as constraints or restrictions, and [15] cannot totally
conclude whether the same property was attached to more
than one class, and does not support the creation of a
hierarchy of properties.

The main am is not only to create a graphical
representation to make it easier to understand, but
importantly, this model should be able to capture the semantic
richness of the defined software engineering ontology. In the
next sections, graphical notations are presented to facilitate
the software engineering ontology modelling process. Some
concepts or terms represented by the notations have multiple
presentations.

3.1 Class Notations

The notation of the software engineering ontology
class is represented as a rectangle with two compartments.
The top compartment is for labelling the class and the second
compartment is used for presenting properties, if there are
any, related to the class or to an XML schema data type
value. It is mandatory to specify the word ‘<<Concept>>’
above the class label in the top compartment. The
generalisation symbol appears as a line with one end empty
and the other with a hollow triangle arrowhead. The empty

www.ijraset.com

Vol. 1 Issue IV, November 2013
ISSN: 2321-9653

INTERNATIONAL JOURNAL FOR RESEARCH IN APPLIED SCIENCE
AND ENGINEERING TECHNOLOGY (IJRASET)

end is aways connected to the class being subsumed,
whereas the hollow arrowhead connects to the class that

subsumes. Fig. 2 shows an example of a class
ClassRelationshippresentation and its subclasses.
<Lmcey>>
Clazdalorship
£
sonacks | [<Toncepl> wLorEpks

ClaseSinuchie | | ClassJeperdeacy | ClazeBenerzlizaton

I

[]]
<LaneEptE e nrgEpta2 <<l ongepk
[asshnpecaton | [Clastssociaion) [ClzsComeastion

Fig.3. Class ClassRelationship presentation and its sub-
classes

3.2 Property Relation, Characteristic and Redtriction

Notations

Notations for software engineering ontology
properties include data type property, object property, its
characteristics, its restrictions, and association class attached
property. The data type property of the software engineering
ontology class can be expressed in the bottom compartment
of class notation. This is an alternative design for data type
properties. That means the top compartment is called the
‘domain’. In the bottom compartment, notation formats as in
the order of data type property name, its characteristic, its
type (e.g. String, Integer) and its restriction. The type of data
type property is considered as arange. The characteristics of
data type property can be either functional or non functional
represented bythe words “Single” or ‘“Multiple’ respectively.
An enumeration in software engineering ontology is
represented in curly brackets ({}).

Fig. 4 expresses that class ClassOperationhas data
type property Class Operation Namewhich is functional and
itstypeis String. It also defines functional data type property
Class Operation_Visibilityto relate a set of data values of
‘public’, ‘private’ and ‘protected’

Page 24

<< oncapts>
ClzssCperalion
Class Cperation_MName Single String
Class Cperation_\isibility Single {Public, Private, Profected}

Fig.4. Class ClassOperation presentation and its
data type properties

The object property of the software engineering
ontology can be expressed in the bottom compartment of
class notation like data type properties. This is an aternative
design for object property. In this manner, the top
compartment is still called its domain. Notation format in the
bottom compartment is the same as the order of the object
property’s name, its characteristics, class name (its range),
and its redtriction. Class nhame expression as a range can
assert the complex class description such as union
(represented by symbol ‘U’), intersection (represented by
symbol ‘n’). In addition, an object property can be expressed
as an arrow with an open arrowhead and with a text label of
the object property’s name. This is an alternative design for
object properties.

The arrow points from the domain of property to the
range of property. Its restrictions can be expressed in the
bracket after its name. Fig.5 shows class Classand its
properties. Symbols v, 3, and represent restrictions
alVaueFrom, someVaueFrom, and hasValue respectively.
For the cardinality restriction, symbols equal =, greater than
and equal to >and less than and equa to <respectively
represent cardinality specifying the exact number, minimum
cardinality specifying the minimum number and maximum
cardinality specifying the maximum number.

The asterisk * is used as part of the specification to
indicate the unlimited upper bound. Fig. 6 (a) shows that at
least two relations Relating Activityrelate instance from
class JoinTransitionto class Activity and the property
Related Activityrestricts instance from class
JoinTransitionto exactly one instance of class Activity. In
other words, in join transition (from activity diagram) there
are a least two related activities transited into one related
activity as shown in Fig. 6 (b).

www.ijraset.com

Vol. 1 Issue IV, November 2013
ISSN: 2321-9653

INTERNATIONAL JOURNAL FOR RESEARCH IN APPLIED SCIENCE
AND ENGINEERING TECHNOLOGY (IJRASET)

<=Concepts>
Class

lass Attribute

<<oncept=>
ClazsaAltribute

Class Mame Single Siring

Class AlTibute Name Single Sring
lass_Atnbute_Catatype Single {Integer,
Flaat, Siring, Characler, Boolean)

lass Operation

lass_Atnbute_Wisibiity Single
Public,Private Protected)

<L ONCepr>
ClassOperation

Class Operation Name Single Siring
Class Operation Visibiity Single
{Public,Private,Protected)

Fig.5 Class Class presentation and its properties

twmlalem]_Aclhively Mulingde Saclieiby Resdbalend Socbvily — 1

Eai ety T
Join T ramsiien
B
Relating Activity Multiple Activity Felating Acthvity = 2

(A Cardinaling raatrictinna In join tranaitan

(Aty j

[AETITL ‘J

G

ik Jom transtion —asteaty diagram

3.3 Instance Notation

An instance notation is represented as an ellipse
with a dotted line attached to its class or property. If it isan
instance of property, then the ellipse contains the property
name followed by a colon and then the instance name.
Unlike an instance of class, in the ellipse there is only the
instance name. To make it easy to read, a dotted line is
attached to most of the class name or property name of its
class instance or property instances. Fig. 7 shows populating
the UML class diagram shown in Fig. 7 (@) into the ontology
model shownin Fig. 7 (b) asinstances.

Fig. 6 Class JoinTransition presentation and its properties

oMl _ THirmg. Derson - se———] Than Pduilicte
e ey Vi Pt s SIS

AT | e ST -]

eI SRSy T Ta,

CMatalirg_ Curdiailn: T

oy LT e T T e ——— T P
- —— il i

LT T—

T TS TR e T
Aer e

i TR ST T
s o

Gual LIRS mshie slivayreree

[—
i e U
. T 1
I
)
s "
- e
|' [——T— 'L___.--"""'T i
(LI S
| T Pt | T {-F_-:j
e =T
I_,_I =
[
T e L
ACIRAE SRRSO AR
Combruinl_Hob: Seghc Eiring
Fohatheg_Thing Mullsio
L g e et
e -\.1|:.‘.4'L|1mu =
A IS A e
e Rty Fivagie Fariog
Rl LRIy GO S
TN RIS RS L F
- Al g P e SH Sk
TR TR _
o e S Tans_ssaccinboriTs

leanccimen treng P
[et 0 S I ST T

(B IOICACy (T ST Tl CIREA ST Ty

Fig. 7. Presentation of instances of classes and properties

Page 25

www.ijraset.com

Vol. 1 Issue IV, November 2013
ISSN: 2321-9653

INTERNATIONAL JOURNAL FOR RESEARCH IN APPLIED SCIENCE
AND ENGINEERING TECHNOLOGY (IJRASET)

3. IMPLEMENTATION OF SOFTWARE ENGINEERING
ONTOLOGY AND DESIGN

A process of design in the software engineering
ontology refers to the process of design concepts, concepts
hierarchy, relations, and constraints in the software
engineering domain. Sources of software engineering
knowledge are from the software engineering textbook of lan
Sommerville [17] and the Software Engineering Body of
Knowledge (SWEBOK) [18] upon which we base our
design. The software engineering ontology contains 362
concepts and 303 relations. Due to limited space, in this
section we will illustrate the design by choosing some
specific examples of common, widely-used concepts such as
UML class diagram, UML activity diagram, UML use case
diagram, entity diagram.

4.1 Ontology Model for aUML Class Diagram

The first example isa UML class diagram ontology.
A class diagram is a diagram that represents a set of classes
and their interrelationships [16]. Commonly, the structural
details of classes expand their attributes and their operations.
The relationships within these five main classes are:
dependencies, generalisations, aggregations, compositions,
and associations.

The relationships of aggregations, composition and
association are used to structure a class, so in the ontology
model of class diagrams, they are grouped together. Fig. 8
shows the UML class diagram ontology.

4.2 Ontology Model for an Entity-Relationship Diagram

An entity-relationship ~ diagram represents
conceptual models of data stored in information systems
[16]. Fig. 9 shows an ontology model of entity-relationship
diagrams. There are three main basic components in the
entity-relationship diagrams which are entities, attributes and
relationships.

Entity attributes can be classified as being simple,
composite or derived. A simple attribute is composed of a
single component and a composite attribute is composed of
multiple components. In the ontology model, cardinality

Page 26

restriction in relation has Subdivided Attribute defines
attributes as being either simple or composite.

A derived attribute is based on another attribute(s)
and refers to relation has Derived Attribute restricting at least
one relation link to ontology classEntitiyAttribute. Key can
be defined as attributes of super key, alternate key, primary
key, or candidate key. This refers to relation Entity Attribute
Key in the ontology model. An attribute can have a single or
greater-than-one value. In the ontology model, cardinality
restriction from relation Entity Attribute Vaue defines
having a single or greater-than-one value. There are three
main degrees of entity relationships. unary, binary and
complex. The complex entity relationship can be further
divided into quaternary and ternary.

In the ontology model, cardinality restriction
constrains the number of entities that participate in a
relationship. This means that in the ontology view there is
only one entity i.e. relation Entityl. For a binary
relationship, there are two entities in the relationship i.e. in
relations Entityland Entity2; whilein aternary relationship,
there are three entities in the relationship i.e. in relation
Entityl, Entity2, and Entity3. For a quaternary entity
relationship, there are four entities in the relationship i.e. in
relations Entityl, Entity2, Entity3, and Entity4.In an entity
relationship, cardinality can be specified as a string which
can be a dtring of 1..1 (one and only one), 0..* (zero or
more), 1..* (one ormore), 0..1 (zero or one) as shown in the
ontology model. Attributes can aso be assigned to
relationships referring to relation has Attribute on
Relationships in the ontology model.

4.3 Ontology Model for aUML Activity Diagram

An activity diagram shows the control flow from
activity to activity [27]. Mainly, activity diagrams contain
activities, transitions, swimlane, and objects. A locus of
activities is specified by a swimlane. This refers to relation
in_Swimlanein the ontology model of activity diagrams in
Figure 10. Every activity belongs to exactly one swimlane;
however, transition may force it to cross lanes. This means
maximum cardinality restriction in relation in_Swimlane.
Objects may be involved in the flow of control associated
with an activity diagram. This refers to relations
set_Object_Flowand itsinverse, get_ Object_Flow.

www.ijraset.com

Vol. 1 Issue IV, November 2013
ISSN: 2321-9653

INTERNATIONAL JOURNAL FOR RESEARCH IN APPLIED SCIENCE
AND ENGINEERING TECHNOLOGY (IJRASET)

Transitions of activities are classified into four main
transitions. Firstly, normaltransition shows the path from one
activity to the next activity. This means that, ontology class
Normal Transitionthat has a cardinality restriction, restricts
only the one activity in the relations Related Activityand
Relating_Activity. Secondly, special transition is further
divided into an initid and a stop transition. The initial
transition is where the activity diagrams start. This means
that, ontology class Startwhich has a cardinality restriction,
restricts a least one activity in relation
Related Special_Activitybut no activity in relation
Relating_Specia_Activity.

4.4 Ontology Model for aUML Use Case Diagram

A use case diagram shows a set of use cases and
actors and their relationships. Commonly, use case diagrams
contain actors, use cases, and relationships. Figure 11 shows
an ontology model of use case diagrams. Actors and use
cases refer respectively to ontology classes Actor and
UseCase. System boundary referring to ontology class
SystemBoundary defines use cases limits.

Relationships between use cases, referring to
ontology class UseCaseRelationship are categorised into four
types of, firstly, generalisation relationship — referring to
ontology class GeneralisationRelationship secondly,

LL- a'lal Tul- b]
LT

Cdanz Mame Einple Fing

e T

I
SR

ClhisAeinlomehip
cunsbai | Mol Singe 3y
Tedarn ARt TIARE OO Toen
W bl et U ass U ompo el Ul lass
Srlatir g CigerT T aan_ T e
W e Dopebl L aeedUemps el YU ks

S - Aan_Cpemiin

association relationship — referring to ontology class
AssociationRelationship; thirdly, include relationship -
referring to ontology class IncludeRelationship; and lastly,
extend relationship - referring to ontology class
ExtendRelationship. Only the association relationship defines
the relationship between actors and use cases, and only the
generalisation relationship defines the relationship between
actors. Based on the design of software engineering ontology
as shown by the above examples, software engineering
ontology was implemented.

5. SOFTWARE ENGINEERING ONTOLOGY
EVALUATION

The software engineering ontology has been
implemented in the OWL and deployed on a platform. It can
be accessed at www.seontology.org. This section is devoted
to evaluating the software engineering ontology through the
deployed ontology on the platform. Software engineering
knowledge, formed into software engineering ontology, helps
communications among team members and provides
consistent understanding of the domain knowledge.

Software engineering ontology, together with its
instance knowledge, is used as a communication framework
within a project,

SELLOARANE
Clarss dHibru b
Closs Afrkbage loome Singke Siing
Ulass Afinbute Lazakss Hing e {inkeges |Hioal, Snng,
rharngtes Roniea}
Ulass Afrbube Viibicy Hingle s o preak prolecied)

gy Sl g

12”-} Lt]
r.-hSI-I.IEE""I:II'I
TARR=_ R fr_MAme Einge: Sanng
CARRE CWpRrE e aldiRy Fi e kil R pronstec

s Chis: Ouwadizn Farsmame:

iy -'-'En_r:'.'.'tnpﬁ
[auuglall\:ﬂ-armm
Canl Cminmeinr Fhel: Sarinny
TR E Y TR T TS IREET Ezal Parames=- Hingle Sy
= _clentirier 7 | | CoaaaTiepandangy | | Camenenikatea ([l Pt Dby BE A
Im Codraley Zirgk Hnng Ceerdency lace Hinbeger, Hioal, Siing, Charactsr, Scoizar)
IF SAMINAY Eingle Fiting Ingle siring el Famnes _Laliype Emgi
|Rolatod Foc Mame Einghe Sring Hinmper, Final, Airng, Shanenr, Sooiear
IRelaliy Rk b Sighe Shing
. -
CRrs{HT T ol R HITE S T

1
e e
=hrsshsscciaser Slasslomosstion
Wbl Oljes| Shees Coosr el

W ke U ech i 2SS maanen; Fllass

Llassdcgragatn

Fig. 8 UML class diagram ontology

Page 27

www.ijraset.com

Vol. 1 Issue IV, November 2013
ISSN: 2321-9653

INTERNATIONAL JOURNAL FOR RESEARCH IN APPLIED SCIENCE
AND ENGINEERING TECHNOLOGY (IJRASET)

e, Mhanines |_Aliruis

ez Eaodiy den Alnbue
w |

| mlt
i et -
Snlibydtirizics
— - Erﬂiﬁ_ﬁr.'imr.s_'*hnu Hingle Giving
- 1 : haa ety ey Aniare dey Eirckedtuosr Key,
ﬁ;,:q::“mr; 7 Lty AftmELle Henesa Key. Primary ey, Cancidess eyl
. el Ip i _ [Eity hame Singhe Sirng @ 5jerity Anamns Valie Rubph Shing
1o ty_Rmlafionshy Mame Sivge Suving - 3
i iLn.Ld_un_?ululiL'rqu Elulioks Elﬁl.ﬁ'ﬁul bl
| |
Zﬁ e ooepE < elrmeegia wellnmoeplss
CompesicaEnlily | | Simp keEndity Dhessisas Sraily
dthil miae AllrEnie Allwil 1 e
i e_Eaagvides_ | [Fae_Subcvides [Paz Danved
eoncepr =eLonsapt-= eCanCepT o == 2 Altriaue =0 AT =1
JrarvEntly Jelationg s BinarvE ity Sslationg s 2o S«Enllly Rstanship
Frlity1 SinghaFri fy =rifyt Singe Fnliy 'Q
Eniity_Za-dinaityl Zrge{l.1,2.% 1.7 0.7} 1 Singw Enliy f
Frdity_Da-diraiis @ Srgee{l 1,041 = 03] [Frby Dacfinaditpl Brge - P, >
fr..6% 509} EEAAR. IJI;ELE'I'IMLI'IIN-'*E'*I:M!'II
g Terclinalitgs S g TenaryEnlily Petaivne 12 iy
SR Erifd & rge b Enily™ aiglrcriny
Faite? & roe kit Frlily® Single =rihy
Erlityd & rgeE ity Entityd Singla Ertity
Enlite_ Cardinaltv1 Singlz | Enfity2 Singla Sriny
.01 0T Enlity_Cadnaitrl Ergl
Enlity Cardraltv@ Single | {07,007 1.7 00}
RL.LE.7 17 LTy Enbty_Uedraild Erol
Erlite_Cardiraliv3 Singla | {51,007 1.7.0.1)
2 TR T e Enbty Ceradvd. Srok
b P o B
enbity Cedrads Lrai
i NS R W
Fig. 9 Entity diagram ontology
LA
dmmlane
FaNTTIANR_HAMA CIngie arip
LK})
FI Swdmlame et Udjec:
= EC AT _:_'Lu. T
< Bciraty t T CIhjart
By Marme Sircle 3o [T O
: | Fhia il
| nt O b Sl
SEOACCRTTEE e
| vkt oo i) Sul_Oljz,_Fhw
iy
<<lonoept-s Rl By Lo B
o= el Traan ik Syl s
IH‘:MEM Ly gl Aulviy ool aalend_ Spesdnad A vity Mal e Sclrily
|Hefaling_ Brtiaty anghe Actuty Iefating_Sipecia_Aclty Maoie Sy
I g | iy LEE R TTH KR
BranchTranstilon <<herEEE A ZorcurmentTans Hon
Guad Eapression_t ingh Einng l_ #Har |_ %p Helales_Conzamem oty fautple Aty
Guand_Eunesxing 2 Singls Bhiny Srkman_Frecln Rulate_Fpema urkl: Trorsifon, Concursnl Trunesi o]
s Ewpression_ 2 Eirghe Sinng Lty ol 1 o ‘m'wi.r:t' T Hetaling_Corcurmend_bchoty Muhpe (At
Relaiee_Traneh_acxiviey 1 Elngls [cibdiy, Franech _“m:m Specal ieelatng_soesal Fimrh Traectlion, Ceneerrnl Tranal nng
Iranslfion, Cancuren | ansbon Special |rensiban lbrttry =0 T F..'.I‘hl.'_p-P-1 FyY =
Felates_Srannn_stivly ® Elngla [Arivity, Foaneh . = [|
I~ansion, Conoumesr | anshon, Special | ra Eihan)
Felates_Jranch sctiviy 3 Singk Jaciiny, Eanch A ity hace e Lt
Tranitivn, Sonowniesi Tramaiom, Spmsial Tiowilin ik Trmmilion hain Trarmsilbont
Helaling_branch_Gctly Singhe JActby, Eanch [Halates Loancament scly == % | [eawed Concumert octvly = 1
Trammeition. Sonnourem] Tromaiom Special Trs wilkon (Relating e o rr_tuiihy =1 |Raetrg_Connimant_Arikl = F

Page 28

www.ijraset.com

Vol. 1 Issue IV, November 2013
ISSN: 2321-9653

INTERNATIONAL JOURNAL FOR RESEARCH IN APPLIED SCIENCE
AND ENGINEERING TECHNOLOGY (IJRASET)

Fig.10 UML activity diagram ontology

| <Loncept>

e o
Concep 0

Related Use Caze Multiple

1 Actor
BcIor_Name Singe Sring <<Concept>
__________ Associalion
L w Relationship
<A oncept>>
UgaCege

S.E_Case_NEme Single Sming
g _Cagse Descrption Single String

Use Case Actor
Relating Use Czse Mitiple
Use Case Actor

|
|
|
|
| |lsaCasaRelatianship
|
|
|

[5

1

-

\\‘Q‘ai System Boundary

_/P Farftian Tyl

| I 1 <=CORCRpE=
“"‘CU“E’E}JT—"" tfgmwl[;; *f-f(:mcsptb-b- f'fcﬁnc.ﬂpﬁb E}':-tcﬂ E#uﬁﬂﬂr}'
Genarmlisation Asasciation Irelndie Extend Systern_Boundary Mame
Ralatinnzhip Ralaiinnzhip Relationship Relsticnship Single Sring

Fig.11 UML usecase diagram ontology

thereby providing rational and shared understanding of
project matters. In the platform, software engineering
instance knowledge, in accordance with domain knowledge
that is described in software engineering ontology, is
extracted. By consulting the software engineering ontology,
the platform enables references of software engineering
domain knowledge and enables extraction of instance
knowledge. For example, class diagrams referred to in the
software engineering ontology assert how a set of classes is
formed in the diagram. The specification imposing a
structure on the domain of class diagrams i.e. dlicitation of
each class consists of class name, class attributes, class
operations and relationships hold with other classes. Using
software engineering domain knowledge, together with
instance knowledge, the platform dynamicaly and
automatically acts for a certain class instance that the
member navigates to retrieve accordingly attribute instances,
operation instances, and relationship instances together with
the related class instance details. Fig. 12 shows examples of
instances of class diagrams ontology that are navigated in the
platform. In Fig. 12(a), Classinstance CR_Customeris
navigated to consequently retrieve ClassAttributeinstances
and ClassOperationinstances.

Page 29

ClassRel ationshipinstances can also be navigated to
subsequently retrieve Classinstances that hold in the
relationship and applicable properties of the relationship. For
example, in accessing ClassAssociationinstance,
Classinstances held in the relationship and properties like
role name and cardinalities are automatically retrieved as
shown in Fig. 12(b). Similarly, if those Classinstances are
accessed, then a list of ClassAttributeinstances and a list of
ClassOperationinstances are retrieved to show its attributes
and its operations respectively. In accessing each
ClassAttributeinstance, details of attribute’s name, attribute’s
data type, and attribute’s visibility are shown as referred to
ClassAttributeontology in the software engineering ontology.
In Fig. 12(c), navigating ClassAttributeinstance
CR_CustomerlD, its name of “‘Customer ID’, its data type of
‘integer’, and its visibility of ‘public’ can be revealed. The
same as ClassOperation ontology referred in the software

engineering ontology, in accessing each
ClassOperationinstance, details of operation’s name,

operation’s visibility, and operation’s parameters and
parameters’ data type can be retrieved.

www.ijraset.com

Vol. 1 Issue IV, November 2013
ISSN: 2321-9653

INTERNATIONAL JOURNAL FOR RESEARCH IN APPLIED SCIENCE
AND ENGINEERING TECHNOLOGY (IJRASET)

= ClassRelatiorsship
ClagsDependansy
Classzanambsalion
b ClagaSticlure

< ¥

Mavigatian = Ingtanee
= ClpeaNisgrarma CR Cusiomar
g@ 8 CR_ReraCusiomsr
sshnrbue i
Classoperiio L

Class Marne
Ty
Class Attribute
CA_CustamerD
CR_Marma

Class Operation
CR_NewCustamer
CR_EaveCustomer

{2y Class inslance R Cuslomer

Mavigation Sheet

Mawigatinn Instancs -
ClaeeDi ggrami R Aranrissnni
Class
Classatiriide

LilassUneratan
— ClagsReatiarship

O i Doty
ClassCaneralsation

B ClassSauciure
ClassAmsoretion
ClasaAqpresstean
ClagsCompasilion

-
£l ¥ -

Consiraint Mote

Refated Objoct Class Component
_Gﬁ_ﬁ:w_h !lﬁﬁa_gislr.-mﬂiu-:r

Refating Object Class Component
CFR_RentalCustaner

Rolated Cardinalisg Ralatad Bols Mams
= =

o

(b} Clazsfssocation irtaree CR_AssosalicnRealiarahip

Mevignlion Shest

Mavigatian = Instance -
= ClassDiagrams CR CustameriD
Chass CR_Firstrame
Classhrinkiuge
Classdperagon L OOH
= ClassRelafionship CR_Address
ClagsDenenancy CR Suburb
ClassGeneralisation CR_State
ClassStruclure CR_Posteods
L4 > CR_Courilry

Class Aftribute Mama

fLeiamer 1

Class Attribube Dataty pe

Iritezas -
Class Atribute Visitsility

Fubik: .

(i) ClassAsiribute instance DR_CusiomarlD

Fig. 12 Examples of instances of class diagrams ontology being navigated in the platform

6. CONCLUSION

In this paper, we have analysed the characteristics of
software engineering ontology. We have then defined
graphical notations of modelling software engineering
ontology as an dternative formalism. The modelling
notations are used to design software engineering ontology.
We have only covered some distinguished part of modelling
domain knowledge of software engineering as example. The
practicall software engineering ontology has been
implemented and deployed. Deployment has been discussed
in aspects of knowledge sharing and communication
framework.

Page 30

The evaluation of the ontology is presented of its
useful in practice. Finally, the deployed software engineering
ontology applied to the realities of distributed development is
given to demonstrate its real value to the software
engineering ontology.

However, there are many improvements that can be
made through future work which could consider software
engineering ontology evolution. It is a case of software
engineering domain knowledge changing with the
introduction of new concepts, and change in the
conceptualisation as the semantics of existing terms have
been modified with time.

www.ijraset.com

Vol. 1 Issue IV, November 2013
ISSN: 2321-9653

INTERNATIONAL JOURNAL FOR RESEARCH IN APPLIED SCIENCE
AND ENGINEERING TECHNOLOGY (IJRASET)

This is totally outside the scope of this study
because we assume that software engineering domain
knowledge is mature and has undergone no further changes.
Instead, instantiations in the software engineering ontology
change with corresponding changes to the ontology.

7. REFERENCES

[1]. Witmer, G. Dictionary of Philosophy of Mind -
Ontology. 2004 [cited May 11, 2004]; Available from:

http://www.artsci.wustl.edu/~philos/MindDict/ontology.html

[2]. Wikipedia. Ontology (computer science) From
Wikipedia, the free encyclopaedia. 2006 [cited 8 June 2006];
Available from:

http://en.wikipedia.org/wiki/Ontology %28computer _scienc
€%29.

[3]. Gruber, T.R. A trandlation approach to portable ontology
specification. in Knowledge Acquisition. 1993.

[4]. Gruber, T.R. Toward principles for the design of
ontologies used for knowledge sharing. in International
Workshop on Formal Ontology in Conceptual Analysis and
Knowledge Representation. 1993. Padova, Italy: Kluwer
Academic Publishers, Deventer, The Netherlands.

[5]. Beuster, G. Ontologies Talk given at Czech Academy of
Sciences. 2002 [cited; Available from:
http://www.unikoblenz.de/~gb/papers/2002_intro_talk_ontol
ogy bang/agent_ontologies.pdf.

[6]. Wand, Y., V.C. Storey, and R. Weber, An Ontological
Anaysis of the Relationship Construct in Conceptual
Modeling. ACM Transactions on Database Systems, 1999.
24(4): p. 495-528.

[7]. Genesereth, M.R. Knowledge Interchange Format — draft
proposed American National Standard. 1998 [cited;
Available from: http://logic.stanford.edu/kif/dpans.html.

[8]. Brachman, R.J. and J.G. Schmolze, An overview of the
KL-ONE knowledge representation system, in Cognitive
Science. 1985. p. 171-216.

Page 31

[9]. Farquhar, A., R. Fikes, and J. Rice. The Ontolingua
Server: A Tool for Collaborative Ontology Construction. in
10th Knowledge Acquisition for Knowledge-Based Systems
Workshop. 1996. Banff, Canada.

[10]. MacGregor, R., Inside the LOOM classifier.SIGART
bulletin, 1991. 2(3): p. 70-76.

[11]. Genesereth, M.R. and R.E. Fikes, Knowledge
Interchange Format Version 3 Reference Manual. 1992,
Stanford University Logic Group.

[12]. Duric, D., MDA -based Ontology
Infrastructure.Computer Science and Information Systems,
2004. 1(1).

[13]. Kogut, P., et a., UML for ontology development.The
Knowledge Engineering Review 2002. 17(1): p. 61 - 64.

[14]. Evermann, J., A UML and OWL description of
Bunge’s upperlevel ontology model Software and Systems
Modeling, 2008.

[15]. GaSevié, D., D. Djurié, and V. Devedzi¢, Model Driven
Architecture and Ontology Development 2006: Springer.

[16]. Bourque, P., et a. Guide to the Software Engineering
Body of Knowledge. 2004 Feb. 16, 2005.

[17]. Sommerville, 1., Software Engineering. 8th ed. 2004:
Pearson Education Limited.

[18]. Bourque, P. SWEBOK Guide Call for Reviewers. 2003
[cited 29 May 2003]; Available from:

d lIsRA

ef n\m
cross’ COPERNICUS

10.22214/1JRASET 45,98 IMPACT FACTOR: IMPACT FACTOR:
7.129 7.429

INTERNATIONAL JOURNAL
FOR RESEARCH

IN APPLIED SCIENCE & ENGINEERING TECHNOLOGY

Call : 08813907089 (V) (24*7 Support on Whatsapp)

