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Abstract- The Fast Fourier Transform (FFT) and its inverse (IFFT) are very important algorithms in signal processing, 
software-defined radio, and the most promising modulation technique i.e. Orthogonal Frequency Division Multiplexing 
(OFDM). From the standard structure of OFDM we can find that IFFT/FFT modules play the vital role for any OFDM based 
transceiver. So when zero valued inputs/outputs outnumber nonzero inputs/outputs, then general IFFT/FFT algorithm for 
OFDM is no longer efficient in term of execution time. It is possible to reduce the execution time by “pruning” the FFT. In this 
paper we have implemented a novel and efficient input zero traced radix FFT pruning (algorithm based on radix-2 DIF FFT,
radix-4 DIF FFT, radix-8 DIF FFT). An intuitive comparison of the computational complexity of orthogonal frequency division 
multiplexing (OFDM) system has been made in terms of complex calculations required using different radix Fast Fourier 
transform techniques with and without pruning. The different transform techniques are introduced such as various types of Fast 
Fourier transform (FFT) as radix-2 FFT, radix-4 FFT, radix-8 FFT, mixed radix 4/2, mixed radix 8/2 and split radix 2/4. With 
intuitive mathematical analysis, it has been shown that with the reduced complexity can be offered with pruning, OFDM 
performance can be greatly improved in terms of calculations needed.
Index terms- OFDM (Orthogonal frequency division multiplexing), Fast Fourier Transform (FFT), Pruning Techniques, 
MATLAB.

I. INTRODUCTION

Orthogonal Frequency Divisional Multiplexing (OFDM) is 
a modulation scheme that allows digital data to be efficiently 
and reliably transmitted over a radio channel, even in multi-path 
environments [1].  In OFDM system, Discrete Fourier 
Transforms (DFT)/Fast Fourier Trans- forms (FFT) are used 
instead of modulators. FFT is an efficient tool in the fields of 
signal processing and linear system analysis. DFT isn't 
generalized and utilized widely until FFT was proposed. But the 
inherent contradiction between FFT's spectrum resolution and 
computational time consumption limits its application. To match 
with the order or requirement of a system, the common method 
is to extend the input data sequence x(n) by padding number of 
zeros at the end of it and which is responsible for a increased 
value of computational time. But calculation on undesired 
frequency is unnecessary. As the OFDM based cognitive radio 
[2] has the capability to nullify individual sub carriers to avoid 
interference with the licensed user. So, that there could be a 
large number of zero valued inputs/outputs compare to non-zero 
terms. So the conventional radix FFT algorithms are no longer 
efficient in terms of complexity, execution time and hardware 
architecture. Several researchers have proposed different ways

to make FFT faster by “pruning” the conventional radix FFT 
algorithms.

In this paper we have proposed an input zero traced radix 
DIF FFT pruning algorithm for different radix FFT algorithms, 
suitable for OFDM based transceiver. The computational 
complexity of implementing radix-2, radix-4, radix-8, mixed 
radix and split radix Fast Fourier Transform with and without 
pruning has been calculated in an OFDM system and compared 
their performance. Result shows IZTFFTP of radix algorithms 
are more efficient than without pruning.

II. OFDM SYSTEM MODEL

OFDM is a kind of FDM (Frequency Division 
Multiplexing) technique in which we divide a data stream into a 
number of bit streams which are transmitted through sub-
channels [3]. 

The characteristics of these sub-channels are that they are 
orthogonal to each other. As the data that are transmitted 
through a sub-channel at a particular time are only a portion of 
the data transmitted through a channel so bit rate in a sub-
channel can be kept much low. After splitting the data in N 
parallel data streams each stream is then mapped to a tone at a 
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unique frequency and combined together using the Inverse Fast 
Fourier Transform (IFFT) to yield the time domain waveform to 
be transmitted [4]. After IFFT is done, the time domain signals 
are then converted to serial data and cyclic extension is added to 
the signal. Then the signal is transmitted. At the receiving side 
we do the reverse process to get original data from the received 
one [4,5]. 

In case of deep fade, several symbols in single carrier is 
damaged seriously, but in parallel transmission each of N 
symbol is slightly affected. So even though the channel is 
frequency selective, the sub-channel is flat or slightly frequency 
selective. This is why OFDM provide good protection against 
fading [6]. 

In an OFDM system there are N numbers of sub-channels. 
If N is high then it will be very complex to design a system with 
N modulators and demodulators. Fortunately, it can be 
implemented alternatively using DFT/FFT to reduce the high 
complexity. A detailed system model for OFDM system is 
shown in Figure 1 [5,6].

Figure1: OFDM System Model         

III. FOURIER TRANSFORM ALGORITHM

Discrete Fourier Transform (DFT) computational 
complexity is so high that it will cause a long computational 
time and large power dissipation in implementation. Cooley and 

Tukey provided a lot of ways to reduce the computational 
complexity. From that, many fast DFT algorithms have been 
developing to reduce the large number of the computational 
complexity, and these fast DFT algorithms are named fast 
Fourier transform (FFT) algorithms. Decomposing is an 
important role in the FFT algorithms. There are two 
decomposed types of the FFT algorithm. One is decimation-in-
time (DIT), and the other is decimation-in-frequency (DIF). 
There is no difference in computational complexity between 
these two types of FFT algorithm. Different Radix DIF 
algorithms we used are 

A. Radix-2 DIF FFT Algorithm
Decomposing the output frequency sequence X[k] into the 

even numbered points and odd numbered points is the key 
component of the Radix-2 DIF FFT algorithm [6]. We can 
divide X[k] into 2r and 2r+1, then we can obtain the following 
equations：!E2&F= B 'E%F 14(*5)1/)

40( (1)
!E2&+ 1F= B 'E%F 14(*5.)) (2)1/)

40(&= 0,1,2, . . ,@�2A− 1
Because the decomposition of the Equation (1) and 

Equation (2) are the same, we only use Equation (1) to explain 
as shown in Equation (3).

!E2&F= B 'E%F 14(*5)1*/)
40( + B 'E%F 14(*5) (3)1/)

401*
Finally, by the periodic property of twiddle factors, we can 

get the even frequency samples as

!E2&F= B ('E%F+'E%+�/2F)1*/)
40(  14(*5) (4)

&= 0,1,2, . . ,@�2A− 1
Similarly, the odd frequency samples is
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!E2&+ 1F= B @'E%F/'=%+�2?A
1*/)
40(  14(*5) 1*4

&= 0,1,2, . . ,G1*H− 1 (5) From Equation 

(4) and (5), we can find out the same components, x[n] and
x[n+N/2], so we can combine the two equations as one basic 
butterfly unit shown in Figure 2. The solid line means that x[n] 
adds x[n + N / 2] , and the meaning 
of the dotted line is that x[n] subtracts x[n + N / 2] . 

Figure 2: The butterfly signal flow graph of radix-2 DIF FFT

We can use the same way to further decompose N-point 
DFT into even smaller DFT block. So from the radix-2 dif FFT, 
there is a reduction of number of multiplications, which is about 
a factor of 2, showing the significance of radix-2 algorithm for 
efficient computation. So this algorithm can compute N-point 
FFT in N/2 cycles.

B.Radix-4 DIF FFT
In case N-data points expressed as power of 4M, we can 

employ radix-4 algorithm [9] instead of radix-2 algorithm for 
more efficient estimation. The FFT length is 4M, where M is the
number of stages. The radix-4 DIF fast Fourier transform (FFT)
expresses the DFT equation as four summations then divides it
into four equations, each of which computes every fourth output
sample. The following equations illustrate radix-4 decimation in
frequency.

!(#) = B '(%)1/)
40(  142 (6)

= B '(%)1,/)
40(  142+ B '(%)*1,/)

401,
 142 + B '(%)+1,/)

40*1,
 142

+ B '(%)1/)
40+1,

 142 (7)

Equation (7) can thus be expressed as

!(#) = B K'(%) + (−")2'(%+� 4�)+ (−1)2'(%+� 2�) + (")2'(%+ 3� 4�) L 142
1,/)
40(

(8)

So, Equation (8) can then be expressed as four N/ 4 point DFTs. 
The simplified butterfly signal flow graph of radix-4 DIF FFT is 
shown in Figure 3.

Figure 3: The simplified butterfly signal flow graph of radix-4 
DIF FFT

This algorithm results in (3/8)N log*� complex 
multiplications and (3/2)N log*� complex additions. So the 
number of multiplications is reduced by 25%, but the number of 
addition is increased by 50%.

C.Radix-8 DIF FFT
Comparing with the conventional radix-2 FFT algorithm 

and radix-4 FFT algorithm, the advantage of developing radix-8
FFT algorithm is to further decrease the complexities, especially 
the number of complex multiplications in implementation. We 
can split Equation (2.1) and replace index k with eight parts, 
including 8r, 8r+1,8r+2, 8r+3, 8r+4, 8r+5, 8r+6, and 8r+7. 
Hence, we can rewrite Equation (6) and obtain the Equation (9).!(8&+$) =
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= B
���
��
���
� 'E%F+'<%+ 2�8;> ,3+'<%+ 4�8;> ,*3+'<%+ 6�8;> ,/3���

�1/)
50(

+
��
�� '<%+�8;>+'<%+ 3�8;> ,3+'I%+ 5�8;J ,*3+'<%+ 7�8;> ,/3��

�� -3���
�� 143 1/-45

(9)

The butterfly graph can be simplified as shown in Figure 4

Figure 4: The simplified butterfly signal flow graph of radix-8 
DIF FFT

D. Mixed radix DIF FFT There are 
two kinds of mixed-radix DIF FFT algorithms. The first kind 
refers to a situation arising naturally when a radix-q algorithm, 
where q = 2m > 2, is applied to an input series consisting of N = 
2k × qs equally spaced points, where1 ≤ k < m. In this case, out 
of necessity, k steps of radix-2 algorithm are applied either at the 
beginning or at the end of the transform, while the rest of the
transform is carried out by s steps of the radix-q algorithm.

For example if N = 22m+1 = 2 × 4m, the mixed-radix 
algorithm [7][8] combines one step of the radix-2 algorithm and 
m steps of the radix-4 algorithm. The second kind of mixed-
radix algorithms in the literature refers to those specialized for a 
composite N = N0 × N1 × N2 ...× Nk. Different algorithms may 
be used depending on whether the factors satisfy certain 
restrictions. Only the 2 × 4m of the first kind of mixed-radix 
algorithm will be considered here.

The mixed-radix 4/2 butterfly unit is shown in Figure5.

Figure 5: The butterfly signal flow graph of mixed-radix-4/2
DIF FFT

It uses both the radix-22 and the radix-2 algorithms can perform 
fast FFT computations and can process FFTs that are not power 
of four. The mixed-radix 4/2, which calculates four butterfly 
outputs based on X(0)~X(3). The proposed butterfly unit has 
three complex multipliers and eight complex adders.

E. Split-Radix FFT Algorithms
Split-radix FFT algorithm assumes two or more parallel 

radix decompositions in every decomposition stage to fully 
exploit advantage of different fixed-radix FFT algorithm. As a 
result, a split-radix FFT algorithm generally has fewer counts of 
adder and multiplication than the fixed-radix FFT algorithms, 
while retains applicability to all power-of-2 FFT length.

More computational complexity of the odd frequency terms 
than the even frequency terms, so we can further decompose the 
odd terms to reduce complexities. If we use radix-2 DIF FFT 
algorithm for the even frequency terms and the radix-22 DIF 
FFT algorithm for the odd parts, we can obtain the split-radix 
2/4 algorithm [10,11] as shown in the equation
in the Equation (10).

!E2#F=� G'E%F+'I%+ 1*JH76/)40(  14(*2) (10)

#= 0,1,2, . . ,@�2A− 1
!(4#+ 1) =
B = '(%) + (−")'(%+� 4�)+(−1)'(%+� 2�)+ (")'(%+ 3� 4�)? 14 142
1,/)
40(

(11)!(4#+ 3) =
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B = '(%) + (")'(%+� 4�)−'(%+� 2�) + (−")'(%+ 3� 4�)? 1+4 142
1,/)
40(

(12)

Thus the N-point DFT is decomposed into one N/2 -point DFT 
without additional twiddle factors and two N/4 -point DFTs with 
twiddle factors. The N-point DFT is obtained by successive use 
of these decompositions up to the last stage. Thus we obtain a
DIF split-radix-2/4 algorithm. The signal flow graph of basic 
butterfly cell of split-radix-2/4 DIF FFT algorithm is shown in 
Figure 6

Figure 6: The butterfly signal flow graph of mixed-radix-2/4
DIF FFT

we have !(0) ='(%) +'G%+ 1*H!(2) ='@%+�4A+'@%+ 3�4 A!(1) == '(%) + (−")'(%+� 4�)+(−1)'(%+� 2�) + (")'(%+ 3� 4�)? 14
!(3) == '(%) + (")'(%+� 4�)−'(%+� 2�) + (−")'(%+ 3� 4�)? 1+4

(13)

As a result, even and odd frequency samples of each basic 
processing block are not produced in the same stage of the 
complete signal flow graph. This property causes irregularity of 

signal flow graph, because the signal flow graph is an “L”-shape 
topology.

IV PRUNING TECHNIQUES

To increase the efficiency of the FFT technique several 
pruning and different other techniques have been proposed by 
many researchers. In this paper, we have implemented a new 
pruning technique i.e. IZTFFTP by simple modification and 
some changes and also includes some tricky mathematical 
techniques to reduce the total execution time. 

Zero tracing- as in wide band communication system a large 
portion of frequency channel may be unoccupied by the licensed 
user, so no. of zero valued inputs are much greater than the non-
zero valued inputs in a FFT/IFFT operation at the transceiver. 
Then this algorithm will give best response in terms of reduced 
execution time by reducing the no. of complex computation 
required for twiddle factor calculation. IZTFFTP have a strong 
searching condition, which have an array for storing the input & 
output values after every iteration of butterfly calculation. In a 
input searching result whenever it found “zero” at any input, 
simply omit that calculation by considering  useful condition
based on radix algorithm used.

A Input Zero Traced Radix-2 DIF FFT Pruning
In radix-2 since we couple two inputs to obtain two outputs, 

we therefore have 4 combinations of those two inputs at radix-2 
butterfly. Now there exist three conditions only based upon 
zeros at the input.

 No zero at input: No pruning happens in this case, butterfly 
calculations are same as conventional radix-2.

 Any one input zero: Output will be only the copied version of 
input available, butterfly calculations are reduced compared to 
conventional radix-2.

 All zero input: Output is zero and is obtained from 
mathematical butterfly calculations is zero.

B. Input Zero Traced Radix-4 DIF FFT Pruning In radix-4
since we couple four inputs to obtain four outputs, we therefore 
have 16 combinations of those four inputs at radix-4 butterfly. 
Now therefore for radix-4 pruning there exist five conditions 
only based upon zeros at the input.

 No zero at the input: No pruning takes place, butterfly 
calculations are same as  radix-4

 Any one input zero: Output will be only the copied version of
remaining inputs available, butterfly calculations are reduced 
compared to radix-4.
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 Any two inputs are zeros: Output will be only the copied 
version of that remaining two inputs available, butterfly 
calculations are reduced compared to radix-4 pruning with 
one zero at input.

 Any three inputs are zeros: Output will be only the copied 
version of that remaining single  input available, butterfly 
calculations are reduced compared to radix-4 pruning with 
two zero at input.

 All zeros input: Output is zero and is obtained from 
mathematical calculations is zero.

C. Input Zero Traced Radix-8 DIF FFT Pruning In radix-8 
since we couple eight inputs to obtain eight outputs, we 
therefore have 256 combinations of those eight inputs at radix-8
butterfly. Now therefore for radix-8 pruning there exist seven
conditions only based upon zeros at the input. Similarly to 
radix-4 pruning, output is the version of non zero input. The 
more the number of zeros at input leads to less mathematical 
calculations compared to radix-8.

D. Input Zero Traced Mixed radix DIF FFT Pruning If we 
consider mixed radix 4/2, it uses the combination of radix-2 
pruning and radix-4 pruning.  Similarly mixed radix 8/2 uses the 
combination of radix-2 pruning and radix8 pruning. 

E. Input Zero Traced Split radix DIF FFT Pruning If we 
consider spilt radix 2/4, it uses the combination of radix-2 
pruning and radix-4 pruning.  

V RESULTS

In order to compare the computational complexities among 
the different radix DIF FFT algorithms on OFDM, the 
calculations based on the OFDM block sizes have been 
performed which are given in Table 1 and with pruning 
comparison in Table 2.

The speed improvement factors from without to with pruning 
of different radix algorithms are seen in Table 3.

OFDM 
Block 
Size

Radix -2 Radix-4 Radix-8
Mixed 

Radix-4/2
Mixed 

Radix-8/2
Split 

Radix-2/4

cm cadd cm cadd cm cadd cm cadd cm cadd cm cadd
2 1 2 - - - - - - - - - -
4 4 8 3 8 - - - - - 0 8
8 12 24 - - 7 24 10 24 - - 4 24
16 32 64 24 64 - - 28 64 22 64 12 64
32 80 160 - - - - 64 160 60 160 36 160
64 192 384 144 384 112 384 160 384 152 384 92 384

Table 2: Comparison of complex additions(cadd) and complex multiplications(cm) of different radix algorithms without pruning

OFDM 
Block 
Size

Radix -2 Radix-4 Radix-8
Mixed 

Radix-4/2
Mixed 

Radix-8/2
Split 

Radix-2/4

cm cadd cm cadd cm cadd cm cadd cm cadd cm cadd
2 0 2 - - - - - - - - - -
4 0 8 3 8 - - - - 0 8
8 12 24 - - 7 24 8 24 - - 4 24
16 31 64 24 64 - - 26 64 22 64 12 64
32 76 160 - - - - 64 160 60 160 36 160
64 179 384 141 384 112 384 157 384 152 384 90 384

Table 2: Comparison of complex additions(cadd) and complex multiplications(cm) of different radix algorithms with pruning
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FF
T 
Size

Radix
- 2

Radix
-4

Radix
-8

Mixed 
Radix
-4/2

Mixe
d 

radix-
8/2

Split 
radix
-2/4

8 1 - 1 1.25 - 1
16 1.03 1 - 1.07 1 1
32 1.05 - - 1 1 1            
64 1.07 1.02 1 1.01 1 1
Table 3: Speed Improvement Factor without to with pruning 

in terms of Multiplications

Output shows the significant reduction of computational 
complexity by reducing the total no. of complex operation 
i.e. both the multiplications and additions compare to the 
ordinary radix FFT operations. The complex multiplications 
and additions are compared for different radix and pruned 
algorithms. The 
comparison of complex multiplications for different radix 
DIF FFT algorithms is shown in Figure 7 and for different 
input zero traced radix DIF FFT pruned algorithms are shown 
in Figure 8.

Figure 7: Comparison of complex multiplications for 
different radix DIF FFT

Figure 8: Comparison of complex multiplications for 
different Radix DIF FFT pruned algorithms

VI CONCLUSION

The computational performance of an OFDM system 
depends on FFT as in an OFDM system. FFT works as a 

modulator. If the complexity decreases, then the speed of 
OFDM system increases. Results shows input zero traced 
radix DIF FFT pruned algorithms are much efficient than the 
Radix DIF FFT algorithms as it takes very less time to 
compute where number of zero valued inputs/outputs are 
greater than the total number of non zero terms, with 
maintaining a good trade-off between time and space 
complexity, and it is also independent to any input data sets.
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