

Issue ssue-1 October 2014

www. ijraset.com Special Issue-1, October 2014
SJ Impact Factor-3.995 ISSN: 2321-9653

International Journal for Research in Applied Science & Engineering
Technology(IJRASET)

Page 10

Computational Performances of OFDM using
Different Pruned Radix FFT Algorithms

Alekhya Chundru1, P.Krishna Kanth Varma2

M.Tech Student, Asst Professor Department Of Eelectronics and Communications,
SRKR Engineering College,

Andhra Pradesh, India

Abstract- The Fast Fourier Transform (FFT) and its inverse (IFFT) are very important algorithms in signal processing,
software-defined radio, and the most promising modulation technique i.e. Orthogonal Frequency Division Multiplexing
(OFDM). From the standard structure of OFDM we can find that IFFT/FFT modules play the vital role for any OFDM based
transceiver. So when zero valued inputs/outputs outnumber nonzero inputs/outputs, then general IFFT/FFT algorithm for
OFDM is no longer efficient in term of execution time. It is possible to reduce the execution time by “pruning” the FFT. In this
paper we have implemented a novel and efficient input zero traced radix FFT pruning (algorithm based on radix-2 DIF FFT,
radix-4 DIF FFT, radix-8 DIF FFT). An intuitive comparison of the computational complexity of orthogonal frequency division
multiplexing (OFDM) system has been made in terms of complex calculations required using different radix Fast Fourier
transform techniques with and without pruning. The different transform techniques are introduced such as various types of Fast
Fourier transform (FFT) as radix-2 FFT, radix-4 FFT, radix-8 FFT, mixed radix 4/2, mixed radix 8/2 and split radix 2/4. With
intuitive mathematical analysis, it has been shown that with the reduced complexity can be offered with pruning, OFDM
performance can be greatly improved in terms of calculations needed.
Index terms- OFDM (Orthogonal frequency division multiplexing), Fast Fourier Transform (FFT), Pruning Techniques,
MATLAB.

I. INTRODUCTION

Orthogonal Frequency Divisional Multiplexing (OFDM) is
a modulation scheme that allows digital data to be efficiently
and reliably transmitted over a radio channel, even in multi-path
environments [1]. In OFDM system, Discrete Fourier
Transforms (DFT)/Fast Fourier Trans- forms (FFT) are used
instead of modulators. FFT is an efficient tool in the fields of
signal processing and linear system analysis. DFT isn't
generalized and utilized widely until FFT was proposed. But the
inherent contradiction between FFT's spectrum resolution and
computational time consumption limits its application. To match
with the order or requirement of a system, the common method
is to extend the input data sequence x(n) by padding number of
zeros at the end of it and which is responsible for a increased
value of computational time. But calculation on undesired
frequency is unnecessary. As the OFDM based cognitive radio
[2] has the capability to nullify individual sub carriers to avoid
interference with the licensed user. So, that there could be a
large number of zero valued inputs/outputs compare to non-zero
terms. So the conventional radix FFT algorithms are no longer
efficient in terms of complexity, execution time and hardware
architecture. Several researchers have proposed different ways

to make FFT faster by “pruning” the conventional radix FFT
algorithms.

In this paper we have proposed an input zero traced radix
DIF FFT pruning algorithm for different radix FFT algorithms,
suitable for OFDM based transceiver. The computational
complexity of implementing radix-2, radix-4, radix-8, mixed
radix and split radix Fast Fourier Transform with and without
pruning has been calculated in an OFDM system and compared
their performance. Result shows IZTFFTP of radix algorithms
are more efficient than without pruning.

II. OFDM SYSTEM MODEL

OFDM is a kind of FDM (Frequency Division
Multiplexing) technique in which we divide a data stream into a
number of bit streams which are transmitted through sub-
channels [3].

The characteristics of these sub-channels are that they are
orthogonal to each other. As the data that are transmitted
through a sub-channel at a particular time are only a portion of
the data transmitted through a channel so bit rate in a sub-
channel can be kept much low. After splitting the data in N
parallel data streams each stream is then mapped to a tone at a

www. ijraset.com Special Issue-1, October 2014
SJ Impact Factor-3.995 ISSN: 2321-9653

International Journal for Research in Applied Science & Engineering
Technology(IJRASET)

Page 11

unique frequency and combined together using the Inverse Fast
Fourier Transform (IFFT) to yield the time domain waveform to
be transmitted [4]. After IFFT is done, the time domain signals
are then converted to serial data and cyclic extension is added to
the signal. Then the signal is transmitted. At the receiving side
we do the reverse process to get original data from the received
one [4,5].

In case of deep fade, several symbols in single carrier is
damaged seriously, but in parallel transmission each of N
symbol is slightly affected. So even though the channel is
frequency selective, the sub-channel is flat or slightly frequency
selective. This is why OFDM provide good protection against
fading [6].

In an OFDM system there are N numbers of sub-channels.
If N is high then it will be very complex to design a system with
N modulators and demodulators. Fortunately, it can be
implemented alternatively using DFT/FFT to reduce the high
complexity. A detailed system model for OFDM system is
shown in Figure 1 [5,6].

Figure1: OFDM System Model

III. FOURIER TRANSFORM ALGORITHM

Discrete Fourier Transform (DFT) computational
complexity is so high that it will cause a long computational
time and large power dissipation in implementation. Cooley and

Tukey provided a lot of ways to reduce the computational
complexity. From that, many fast DFT algorithms have been
developing to reduce the large number of the computational
complexity, and these fast DFT algorithms are named fast
Fourier transform (FFT) algorithms. Decomposing is an
important role in the FFT algorithms. There are two
decomposed types of the FFT algorithm. One is decimation-in-
time (DIT), and the other is decimation-in-frequency (DIF).
There is no difference in computational complexity between
these two types of FFT algorithm. Different Radix DIF
algorithms we used are

A. Radix-2 DIF FFT Algorithm
Decomposing the output frequency sequence X[k] into the

even numbered points and odd numbered points is the key
component of the Radix-2 DIF FFT algorithm [6]. We can
divide X[k] into 2r and 2r+1, then we can obtain the following
equations：!E2&F= B 'E%F 14(*5)1/)

40((1)
!E2&+ 1F= B 'E%F 14(*5.)) (2)1/)

40(&= 0,1,2, . . ,@�2A− 1
Because the decomposition of the Equation (1) and

Equation (2) are the same, we only use Equation (1) to explain
as shown in Equation (3).

!E2&F= B 'E%F 14(*5)1*/)
40(+ B 'E%F 14(*5) (3)1/)

401*
Finally, by the periodic property of twiddle factors, we can

get the even frequency samples as

!E2&F= B ('E%F+'E%+�/2F)1*/)
40(14(*5) (4)

&= 0,1,2, . . ,@�2A− 1
Similarly, the odd frequency samples is

www. ijraset.com Special Issue-1, October 2014
SJ Impact Factor-3.995 ISSN: 2321-9653

International Journal for Research in Applied Science & Engineering
Technology(IJRASET)

Page 12

!E2&+ 1F= B @'E%F/'=%+�2?A
1*/)
40(14(*5) 1*4

&= 0,1,2, . . ,G1*H− 1 (5) From Equation

(4) and (5), we can find out the same components, x[n] and
x[n+N/2], so we can combine the two equations as one basic
butterfly unit shown in Figure 2. The solid line means that x[n]
adds x[n + N / 2] , and the meaning
of the dotted line is that x[n] subtracts x[n + N / 2] .

Figure 2: The butterfly signal flow graph of radix-2 DIF FFT

We can use the same way to further decompose N-point
DFT into even smaller DFT block. So from the radix-2 dif FFT,
there is a reduction of number of multiplications, which is about
a factor of 2, showing the significance of radix-2 algorithm for
efficient computation. So this algorithm can compute N-point
FFT in N/2 cycles.

B.Radix-4 DIF FFT
In case N-data points expressed as power of 4M, we can

employ radix-4 algorithm [9] instead of radix-2 algorithm for
more efficient estimation. The FFT length is 4M, where M is the
number of stages. The radix-4 DIF fast Fourier transform (FFT)
expresses the DFT equation as four summations then divides it
into four equations, each of which computes every fourth output
sample. The following equations illustrate radix-4 decimation in
frequency.

!(#) = B '(%)1/)
40(142 (6)

= B '(%)1,/)
40(142+ B '(%)*1,/)

401,
 142 + B '(%)+1,/)

40*1,
 142

+ B '(%)1/)
40+1,

 142 (7)

Equation (7) can thus be expressed as

!(#) = B K'(%) + (−")2'(%+� 4�)+ (−1)2'(%+� 2�) + (")2'(%+ 3� 4�) L 142
1,/)
40(

(8)

So, Equation (8) can then be expressed as four N/ 4 point DFTs.
The simplified butterfly signal flow graph of radix-4 DIF FFT is
shown in Figure 3.

Figure 3: The simplified butterfly signal flow graph of radix-4
DIF FFT

This algorithm results in (3/8)N log*� complex
multiplications and (3/2)N log*� complex additions. So the
number of multiplications is reduced by 25%, but the number of
addition is increased by 50%.

C.Radix-8 DIF FFT
Comparing with the conventional radix-2 FFT algorithm

and radix-4 FFT algorithm, the advantage of developing radix-8
FFT algorithm is to further decrease the complexities, especially
the number of complex multiplications in implementation. We
can split Equation (2.1) and replace index k with eight parts,
including 8r, 8r+1,8r+2, 8r+3, 8r+4, 8r+5, 8r+6, and 8r+7.
Hence, we can rewrite Equation (6) and obtain the Equation (9).!(8&+$) =

www. ijraset.com Special Issue-1, October 2014
SJ Impact Factor-3.995 ISSN: 2321-9653

International Journal for Research in Applied Science & Engineering
Technology(IJRASET)

Page 13

= B
���
��
���
� 'E%F+'<%+ 2�8;> ,3+'<%+ 4�8;> ,*3+'<%+ 6�8;> ,/3���

�1/)
50(

+
��
�� '<%+�8;>+'<%+ 3�8;> ,3+'I%+ 5�8;J ,*3+'<%+ 7�8;> ,/3��

�� -3���
�� 143 1/-45

(9)

The butterfly graph can be simplified as shown in Figure 4

Figure 4: The simplified butterfly signal flow graph of radix-8
DIF FFT

D. Mixed radix DIF FFT There are
two kinds of mixed-radix DIF FFT algorithms. The first kind
refers to a situation arising naturally when a radix-q algorithm,
where q = 2m > 2, is applied to an input series consisting of N =
2k × qs equally spaced points, where1 ≤ k < m. In this case, out
of necessity, k steps of radix-2 algorithm are applied either at the
beginning or at the end of the transform, while the rest of the
transform is carried out by s steps of the radix-q algorithm.

For example if N = 22m+1 = 2 × 4m, the mixed-radix
algorithm [7][8] combines one step of the radix-2 algorithm and
m steps of the radix-4 algorithm. The second kind of mixed-
radix algorithms in the literature refers to those specialized for a
composite N = N0 × N1 × N2 ...× Nk. Different algorithms may
be used depending on whether the factors satisfy certain
restrictions. Only the 2 × 4m of the first kind of mixed-radix
algorithm will be considered here.

The mixed-radix 4/2 butterfly unit is shown in Figure5.

Figure 5: The butterfly signal flow graph of mixed-radix-4/2
DIF FFT

It uses both the radix-22 and the radix-2 algorithms can perform
fast FFT computations and can process FFTs that are not power
of four. The mixed-radix 4/2, which calculates four butterfly
outputs based on X(0)~X(3). The proposed butterfly unit has
three complex multipliers and eight complex adders.

E. Split-Radix FFT Algorithms
Split-radix FFT algorithm assumes two or more parallel

radix decompositions in every decomposition stage to fully
exploit advantage of different fixed-radix FFT algorithm. As a
result, a split-radix FFT algorithm generally has fewer counts of
adder and multiplication than the fixed-radix FFT algorithms,
while retains applicability to all power-of-2 FFT length.

More computational complexity of the odd frequency terms
than the even frequency terms, so we can further decompose the
odd terms to reduce complexities. If we use radix-2 DIF FFT
algorithm for the even frequency terms and the radix-22 DIF
FFT algorithm for the odd parts, we can obtain the split-radix
2/4 algorithm [10,11] as shown in the equation
in the Equation (10).

!E2#F=� G'E%F+'I%+ 1*JH76/)40(14(*2) (10)

#= 0,1,2, . . ,@�2A− 1
!(4#+ 1) =
B = '(%) + (−")'(%+� 4�)+(−1)'(%+� 2�)+ (")'(%+ 3� 4�)? 14 142
1,/)
40(

(11)!(4#+ 3) =

www. ijraset.com Special Issue-1, October 2014
SJ Impact Factor-3.995 ISSN: 2321-9653

International Journal for Research in Applied Science & Engineering
Technology(IJRASET)

Page 14

B = '(%) + (")'(%+� 4�)−'(%+� 2�) + (−")'(%+ 3� 4�)? 1+4 142
1,/)
40(

(12)

Thus the N-point DFT is decomposed into one N/2 -point DFT
without additional twiddle factors and two N/4 -point DFTs with
twiddle factors. The N-point DFT is obtained by successive use
of these decompositions up to the last stage. Thus we obtain a
DIF split-radix-2/4 algorithm. The signal flow graph of basic
butterfly cell of split-radix-2/4 DIF FFT algorithm is shown in
Figure 6

Figure 6: The butterfly signal flow graph of mixed-radix-2/4
DIF FFT

we have !(0) ='(%) +'G%+ 1*H!(2) ='@%+�4A+'@%+ 3�4 A!(1) == '(%) + (−")'(%+� 4�)+(−1)'(%+� 2�) + (")'(%+ 3� 4�)? 14
!(3) == '(%) + (")'(%+� 4�)−'(%+� 2�) + (−")'(%+ 3� 4�)? 1+4

(13)

As a result, even and odd frequency samples of each basic
processing block are not produced in the same stage of the
complete signal flow graph. This property causes irregularity of

signal flow graph, because the signal flow graph is an “L”-shape
topology.

IV PRUNING TECHNIQUES

To increase the efficiency of the FFT technique several
pruning and different other techniques have been proposed by
many researchers. In this paper, we have implemented a new
pruning technique i.e. IZTFFTP by simple modification and
some changes and also includes some tricky mathematical
techniques to reduce the total execution time.

Zero tracing- as in wide band communication system a large
portion of frequency channel may be unoccupied by the licensed
user, so no. of zero valued inputs are much greater than the non-
zero valued inputs in a FFT/IFFT operation at the transceiver.
Then this algorithm will give best response in terms of reduced
execution time by reducing the no. of complex computation
required for twiddle factor calculation. IZTFFTP have a strong
searching condition, which have an array for storing the input &
output values after every iteration of butterfly calculation. In a
input searching result whenever it found “zero” at any input,
simply omit that calculation by considering useful condition
based on radix algorithm used.

A Input Zero Traced Radix-2 DIF FFT Pruning
In radix-2 since we couple two inputs to obtain two outputs,

we therefore have 4 combinations of those two inputs at radix-2
butterfly. Now there exist three conditions only based upon
zeros at the input.

 No zero at input: No pruning happens in this case, butterfly
calculations are same as conventional radix-2.

 Any one input zero: Output will be only the copied version of
input available, butterfly calculations are reduced compared to
conventional radix-2.

 All zero input: Output is zero and is obtained from
mathematical butterfly calculations is zero.

B. Input Zero Traced Radix-4 DIF FFT Pruning In radix-4
since we couple four inputs to obtain four outputs, we therefore
have 16 combinations of those four inputs at radix-4 butterfly.
Now therefore for radix-4 pruning there exist five conditions
only based upon zeros at the input.

 No zero at the input: No pruning takes place, butterfly
calculations are same as radix-4

 Any one input zero: Output will be only the copied version of
remaining inputs available, butterfly calculations are reduced
compared to radix-4.

www. ijraset.com Special Issue-1, October 2014
SJ Impact Factor-3.995 ISSN: 2321-9653

International Journal for Research in Applied Science & Engineering
Technology(IJRASET)

Page 15

 Any two inputs are zeros: Output will be only the copied
version of that remaining two inputs available, butterfly
calculations are reduced compared to radix-4 pruning with
one zero at input.

 Any three inputs are zeros: Output will be only the copied
version of that remaining single input available, butterfly
calculations are reduced compared to radix-4 pruning with
two zero at input.

 All zeros input: Output is zero and is obtained from
mathematical calculations is zero.

C. Input Zero Traced Radix-8 DIF FFT Pruning In radix-8
since we couple eight inputs to obtain eight outputs, we
therefore have 256 combinations of those eight inputs at radix-8
butterfly. Now therefore for radix-8 pruning there exist seven
conditions only based upon zeros at the input. Similarly to
radix-4 pruning, output is the version of non zero input. The
more the number of zeros at input leads to less mathematical
calculations compared to radix-8.

D. Input Zero Traced Mixed radix DIF FFT Pruning If we
consider mixed radix 4/2, it uses the combination of radix-2
pruning and radix-4 pruning. Similarly mixed radix 8/2 uses the
combination of radix-2 pruning and radix8 pruning.

E. Input Zero Traced Split radix DIF FFT Pruning If we
consider spilt radix 2/4, it uses the combination of radix-2
pruning and radix-4 pruning.

V RESULTS

In order to compare the computational complexities among
the different radix DIF FFT algorithms on OFDM, the
calculations based on the OFDM block sizes have been
performed which are given in Table 1 and with pruning
comparison in Table 2.

The speed improvement factors from without to with pruning
of different radix algorithms are seen in Table 3.

OFDM
Block
Size

Radix -2 Radix-4 Radix-8
Mixed

Radix-4/2
Mixed

Radix-8/2
Split

Radix-2/4

cm cadd cm cadd cm cadd cm cadd cm cadd cm cadd
2 1 2 - - - - - - - - - -
4 4 8 3 8 - - - - - 0 8
8 12 24 - - 7 24 10 24 - - 4 24
16 32 64 24 64 - - 28 64 22 64 12 64
32 80 160 - - - - 64 160 60 160 36 160
64 192 384 144 384 112 384 160 384 152 384 92 384

Table 2: Comparison of complex additions(cadd) and complex multiplications(cm) of different radix algorithms without pruning

OFDM
Block
Size

Radix -2 Radix-4 Radix-8
Mixed

Radix-4/2
Mixed

Radix-8/2
Split

Radix-2/4

cm cadd cm cadd cm cadd cm cadd cm cadd cm cadd
2 0 2 - - - - - - - - - -
4 0 8 3 8 - - - - 0 8
8 12 24 - - 7 24 8 24 - - 4 24
16 31 64 24 64 - - 26 64 22 64 12 64
32 76 160 - - - - 64 160 60 160 36 160
64 179 384 141 384 112 384 157 384 152 384 90 384

Table 2: Comparison of complex additions(cadd) and complex multiplications(cm) of different radix algorithms with pruning

www. ijraset.com Special Issue-1, October 2014
SJ Impact Factor-3.995 ISSN: 2321-9653

International Journal for Research in Applied Science & Engineering
Technology(IJRASET)

Page 16

FF
T
Size

Radix
- 2

Radix
-4

Radix
-8

Mixed
Radix
-4/2

Mixe
d

radix-
8/2

Split
radix
-2/4

8 1 - 1 1.25 - 1
16 1.03 1 - 1.07 1 1
32 1.05 - - 1 1 1
64 1.07 1.02 1 1.01 1 1
Table 3: Speed Improvement Factor without to with pruning

in terms of Multiplications

Output shows the significant reduction of computational
complexity by reducing the total no. of complex operation
i.e. both the multiplications and additions compare to the
ordinary radix FFT operations. The complex multiplications
and additions are compared for different radix and pruned
algorithms. The
comparison of complex multiplications for different radix
DIF FFT algorithms is shown in Figure 7 and for different
input zero traced radix DIF FFT pruned algorithms are shown
in Figure 8.

Figure 7: Comparison of complex multiplications for
different radix DIF FFT

Figure 8: Comparison of complex multiplications for
different Radix DIF FFT pruned algorithms

VI CONCLUSION

The computational performance of an OFDM system
depends on FFT as in an OFDM system. FFT works as a

modulator. If the complexity decreases, then the speed of
OFDM system increases. Results shows input zero traced
radix DIF FFT pruned algorithms are much efficient than the
Radix DIF FFT algorithms as it takes very less time to
compute where number of zero valued inputs/outputs are
greater than the total number of non zero terms, with
maintaining a good trade-off between time and space
complexity, and it is also independent to any input data sets.

REFERENCES

[1] B. E. E. P. Lawrey, “Adaptive Techniques for Multi-
User OFDM,” Ph.D. Thesis, James Cook University,
Townsville,2001, pp. 33-34.

[2] J. Mitola, III, "Cognitive Radio: An Integrated Agent
Architecture for Software Defined Radio," Thesis (PhD),
Dept. of Teleinformatics, Royal Institute of Technology
(KTH), Stockholm Sweden, May 2000.

[3] S. Chen, “Fast Fourier Transform,” Lecture Note, Radio
Communications Networks and Systems, 2005.

[4] “OFDM for Mobile Data Communications,” The
International Engineering Consortium WEB ProForum
Tutorial, 2006. http://www.iec.org.

[5] Andrea Goldsmith,” Wireless Communications”
Cambridge university press, 2005, ISBN:
978052170416.

[6] J.G. Proakis and D.G. Manolakis, “Digital Signal Proc-
essing: Principles, Algorithms and Edition, 2002, pp.
448-475.

[7] E. Chu and A. George, Inside the FFT Black Box :Serial
& Parallel Fast FourierTransform Algorithms. CRC
Press LLC, 2000.

[8] B. G. Jo and M. H. Sunwoo, “ New Continuous-Flow
Mixed-Radix (CFMR) FFT Processor Using Novel In-
Place Strategy,” Electron Letters, vol. 52, No. 5, May
2005.

[9] Charles Wu, “Implementing the Radix-4 Decimationin
Frequency (DIF) Fast Fourier Transform (FFT)
Algorithm Using aTMS320C80 DSP”, Digital Signal
Processing Solutions,January 1998.

[10] P. Duhamel and H. Hollmann, “Split-radix FFT
Algorithm,” Electron Letters, vol. 20, pp 14-16, Jan.
1984.

[11] [4] H. V. Sorensen, M. T. Heideman and C. S. Burrus,
“On Computing the Split-radixFFT,” IEEE Trans.
Acoust., Speech, Signal Processing, vol. ASSP-34, pp.
152-156,Feb. 1986.

