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Abstract: In this paper, making use of certain known summation formulae, an attempt has been made to establish 
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I. INTRODUCTION 
 In 1972 Verma [1] established the following expansion formula 
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In this paper, making use of (1.1) and certain known summation formulae, an attempt has been made to establish transformation 
formulae for q-hypergeometric series. 

II. NOTATIONS AND DEFINITIONS 
The generalized basic hypergeometric function is defined as 
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Where  

(ܽ; (ݍ = (1 − ܽ)(1− (ݍܽ … (1 − ;(ିଵݍܽ (ܽ; (ݍ = 1, ݅ > 0, |ݍ| < 1, |ݖ| < ∞																												(2.2) 

and for	݅ = 0, max ,|ݍ|)	 (|ݖ| < 1. Also stands for a sequences of A −parametrs of the form 
ܽଵ,ܽଶ, … ,ܽType	equation	here. 

 We shall make use of following known summations  

	 34 ܽ
ଶ, ܽଶݍ, ݁ସݍଶ,ିݍଶ;ݍଶ; ଶݍ
ܽସݍଶ, ݁ଶ, ݁ଶݍ

൨ =
;ݍ−) (݁ଶ(ݍ ܽଶ⁄ ; ܽଶ(ݍ

(݁ଶ; ;ݍ(−ܽଶ(ݍ (ݍ
	.																																																				(2.3)						 

	 34 ܽ
ଶ,ܽଶݍ, ݁ସݍଶ ଶݍ;ଶݍ;ଶିݍ,
ܽସ, ݁ଶݍ, ݁ଶݍଶ

൨ =
;ݍ−) ݍ(݁ଶ(ଶݍ;ଶ݁)(ݍ ܽଶ⁄ ; ܽଶ(ݍ

(−ܽଶ;ݍ)(݁ଶ;ݍ)(݁ଶݍଶ;ݍଶ)
	,																																(2.4) 

III. MAIN RESULTS 
We shall establish our main results 
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Proof of (3.1) and (3.2) 

Replacing ߚ,ߙ,ݍ	by	ݍଶ,ߙଶ,ߚଶ respectively and then choosing 
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(ܽଶ,ܽଶߙ,ݍଶ,ߚଶ; ଶ)ݍ
(ܽସݍଶ,݁ଶ, ݁ଶݍ;ݍଶ)

, ߛ = ݁ସ,ݓ = ܤ,1 = 1, 

ݔ = ݁ସݍଶ ⁄ଶߚଶߙ  in (1.1) and making use of (2.3) and Gauss’s summation formula in order to sum the inner-series in the left hand 
side we get (3.1) after some simplifications. 

Similarly, replacing ߚ,ߙ,ݍ	by	ݍଶ,ߙଶ,ߚଶ respectively and then choosing  

ܣ =
(ܽଶ,ܽଶߙ,ݍଶ,ߚଶ; ଶ)ݍ
(ܽସ, ݁ଶݍ, ݁ଶݍଶ;ݍଶ)
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In (1.1) and making use of use of (2.4) and Gauss’s summation formula in order to sum the inner series   in the left hand side we get 
(3.2) after some simplifications. 

Taking	ߚ,ߙ → ∞	in	(3.1) we get  


(−݁ଶ;ݍ)(݁ଶ ܽଶ; ⁄ݍ )

(ݍ;ݍଶܽ−)(ݍ;ݍ)

ஶ

ୀ

ቆ
1− ݁ସݍସ

1− ݁ସ
ቇݍଷ(ିଵ)(−݁ସܽଶݍଶ) 

= (݁ସݍଶ;ݍଶ)ஶ
(ܽଶ,ܽଶݍ; ଶݍଶ)݁ସݍ

మ

,ଶݍଶ,ܽସݍ) ݁ଶ, ݁ଶݍ; ଶ)ݍ

ஶ

ୀ

																																																																																																(3.3) 

Taking	ܽ = 1	and	݁ସ = 1	in	(3.3) we obtain	 
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Which on replacing 	ݍଶ by ݍ gives the Euler’s pentagonal identity: 
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Taking	ܽଶ = 1	in	(3.1) we obtain the following summation formula:	 
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Taking ܽ = ݁	and	ߚ = ଵݍ݁ ଶ⁄ 	in	(3.1) we get the following summation formula: 
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Taking ܽ → 0 in (3.7) we get: 
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(−݁ଶ;ݍ)(1 + ݁ଶݍଶ)(݁ଶݍ ܽଶ; ⁄ݍ )

(1(ݍ;ݍ) + ݁ଶ)(−ܽଶ; (ݍ

ஶ

ୀ

 (ଶݍସܽଶ݁−)ଷ(ିଵ)ݍ

= (݁ସݍଶ;ݍଶ)ஶ
(ܽଶ, ܽଶݍ; ଶ(ିଵ)ݍ(ଶݍସ݁)ଶ)ݍ

,ଶ,ܽସݍ) ݁ଶݍ, ݁ଶݍଶ;ݍଶ)

ஶ

ୀ

																																																																																				(3.10)				 

For ܽ → 1, (3.10) gives: 
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Taking ݁ଶ = 1 in (3.11) we find : 
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Which by an appeal to Jacobi’s triple product identity yields the well known identity (after replacing ݍଶ	by	ݍ) 
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Similarly, several results can also be obtained. 

IV. CONCLUSIONS 
 In this paper, transformation formulae for q-hypergeometric series have been established by using certain known summation 
formulae. Eight important results have been derived including Euler’s pentagonal identity and Jacobi’s triple product identity.  
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