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Abstract: A simple and straightforward reduction procedure (which is somewhat different from Packham's [1] approach) is 
employed here to find the linear solution for the normally incident incoming waves at the interface of two liquids where the 
liquids are bounded on the left by a rigid vertical cliff. Analytical expressions for velocity potentials in each of the two liquids 
are obtained here, assuming the lower liquid to be of uniform finite depth and the upper liquid to be of infinite height. 
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I. INTRODUCTION 
Problem of water waves on a beach which slopes at an angle 2/ߨn with the horizontal, n being any integer is an important 
oceanic phenomenon. For n=1, i.e., when a vertical cliff exists on one side of the ocean, a sloping beach problem reduces to the 
problem involving a vertical cliff. The solution of the corresponding two dimensional as well as three dimensional problems 
involving a vertical cliff were obtained by Stoker [2,3], exploiting a powerful, though, complicated method  essentially based on 
the complex variable theory, for deep water  case. 
However, existing literature on problems involving two liquids are, in general, complicated because of the coupled boundary 
conditions at the interface of the liquids. Since then, few attempts have been made to investigate this class of water wave 
problems associated with Laplace's equation and few of its generalizations by employing different mathematical techniques (cf. 
[4]-[8]). The present study is concerned with the two dimensional problem  of incoming wave progressing towards a rigid 
vertical cliff, in  two immiscible liquid, where the lower liquid is of finite  constant depth h and the upper liquid is of finite 
constant  height H. Allowing no reflection of waves by the cliff, the  problem under consideration is attacked for solution, 
assuming  linear theory, by a simple reduction procedure and analytical  expressions for the velocity potentials, in each of the 
two  liquid, are obtained.  As a particular case, a known result for the problem involving a liquid of finite depth h is recovered 
(cf. [6]). 

II.   STATEMENT OF THE PROBLEM 
Let us consider the two-dimensional irrotational motion of two inviscid, homogeneous liquid with densities ߩଵand ߩଶ(ߩଵ >  ,(ଶߩ
of the lower and upper liquid respectively, under the action of gravity. A rectangular Cartesian co-ordinate system is chosen in 
which the y-axis is taken to be vertically downwards into the lower liquid, the plane y = 0, x > 0 is the mean position of the 
interface, x = 0  is the rigid wall, and the two liquid of densities ߩଵand ߩଶ occupy the regions x > 0, 0 < ≥ ݕ h and  x > 0,
−H ≤  y < 0 respectively. The origin is taken at a point on the line of intersection where the mean interface and the wall meet. 

III. MATHEMATICAL FORMULATION OF THE PROBLEM 
Let The problem is to find the velocity potentials Φ(ݕ,ݔ, ݆ with (ݐ = 1,2 (݆ = 1 for the lower liquid and  ݆ = 2 for the upper 
liquid). For periodic motion, we can assume   

                                      Φଵ(ݕ,ݔ, (ݐ = ܴ݁[߶ଵ(ݕ,ݔ) exp(−݅ݐߪ)]
Φଶ(ݕ,ݔ, (ݐ = ܴ݁[߶ଶ(ݔ, (ݕ exp(−݅ݐߪ)]ൠ                                (3.1)  

where   is the circular frequency. 
The problem is to find 21 ,  which behave as x  like progressive waves moving towards the cliff. Thus the problem 
under consideration can be investigated by way of determining the potentials ߶ଵ(ݔ, ,ݔ)ଶ߶,(ݕ  which satisfy the boundary (ݕ
value problems given below:  
1)  Two-dimensional Laplace's equations:    

                                       ∇
ଶ߶ଵ = 0
∇ଶ߶ଶ = 0

ൠ                                                                                                      (3.2)  

in the respective flow domain,   where 2  is the two dimensional Laplacian. 
2) Linearised interface conditions: 
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߶ଵ = ߶ଶ

݇߶ଵ + ߶ଵ = ݏ ቀ݇߶ଶ + ߶ଶቁ
ൡ   on ݕ = ݔ,0 > 0,                                                                          (3.3)

                                 where ܭ = ݏ ଶ/݃ is the wave number, ݃ is the acceleration due to gravity andߪ =  ଵߩ/ଶߩ
3) Conditions at the rigid bottom and top : 

                                               
߶ଵ = ݕ ݊  0 = ℎ
 ߶ଶ = ݕ ݊  0 =  ቋ                                                                                            (3.4)ܪ

4) Conditions on the rigid cliff 0=x  : 

                                       
߶ଵೣ = 0, 0 < ݕ ≤ ℎ

    ߶ଶೣ = 0, ܪ− ≤ ݕ < 0 ൠ                                                                                      (3.5) 

Our purpose is to obtain ߶ଵ,߶ଶ  satisfying (3.2) to (3.5) and the condition that they behave at infinity as progressive waves 
moving towards the wall. 
Further, as no reflection of waves, by the wall, is allowed which can be justified by assuming a source/sink type behavior in the 
potential functions at the origin, in the absence of surface tension (cf. [9]), which lead to the conditions 

                                          ߶ଵ ,߶ଶ → ln ݎ ݎ ݏܽ    = ଶݔ) + ଶ)ଵ/ଶݕ → 0.                                                                               (3.6) 
Noting the conditions (3.3) and (3.4), and following Gorgui and Kassem [10], we can assume that 

                                               
߶ଵ →

cosh ݇(ℎ − (ݕ
sinh ݇ ℎ

exp (−݅݇ݔ)

     ߶ଶ → −
cosh ݇(ܪ + (ݕ

sinh ݇ܪ
exp (−݅݇ݔ)

 

⎭
⎪
⎬

⎪
⎫

ݔ ݏܽ    → ∞.                                                                      (3.7) 

IV.   SOLUTION OF THE PROBLEM 
To solve the problem, mathematically, we reduce the boundary value problem, described by (3.2) to (3.6) and the infinity 
requirement given by (3.7), to another boundary value problem. To do this, let us introduce two new functions ଵ߰and ߰ଶof x, y 
by the following relations: 

                            
                 ߶ଵ =

2cosh݇(ℎ − (ݕ
sinh݇ ℎ

cos݇ݔ + ߰ଵ(ݔ, (ݕ

                        ߶ଶ  = −
2 cosh݇(ܪ + (ݕ

sinh݇ ܪ
cos ݇ݔ + ߰ଶ(ݔ, (ݕ

 

⎭
⎪
⎬

⎪
⎫

                                                                             (4.1)    

Where 21  ,  satisfy the boundary value problems described by (3.2) to (3.6) together with the infinity requirement 

                                                    ߰ଵ → −
cosh݇(ℎ − (ݕ

sinh ݇ ℎ
exp (݅݇ݔ)

                                                  ߰ଶ →
cosh݇(ܪ + (ݕ

sinh ݇ܪ
exp (݅݇ݔ)

 

⎭
⎪
⎬

⎪
⎫

ݔ ݏܽ    → ∞  .                                                                        (4.2) 

It should be mentioned here that, as ݔ  → ∞ , ߰ଵ ,߰ଶ  defined by (4.1) represent outgoing wave, however,  ߶ଵ ,߶ଶ  represent 
incoming wave, though ଵ߰ ,߰ଶ and  ߶ଵ,߶ଶ  satisfy the same boundary value problems described by (3.2) to (3.6). Thus if ߰ଵ,߰ଶ 
are known, the time independent potential functions  ߶ଵ,߶ଶ  can be derived by using (4.1). 
Alternative representation for ߰ଵ,߰ଶ satisfying (3.2) to (3.6), are given by  

                       

߰ଵ(ݔ, (ݕ = ܿ න
cosh݇(ℎ − (ݕ sinh ܪ݇

Δ(݇)

ஶ



cos ݔ݇ ݀݇

   ߰ଶ(ݕ,ݔ) = −ܿන
cosh݇(ܪ + (ݕ sinh݇ℎ

Δ(݇)

ஶ



cos ݔ݇ ݀݇

 

⎭
⎪
⎬

⎪
⎫

                                                                                           (4.3) 

Where )sinhcoshsinhcosh(sinhsinh)(1=)(  khkHskHkhKkHkhskk  . 
Here Δ(݇) has a simple pole at ݇ = ݇ > 0 (say), a simple pole at ݇ = ݇ᇱ < 0 (say), and an infinite number of complex poles 
with positive real part, of the form ߦݏ ± ݅݇ (cf. [8]). Here the contour is indented below the pole at ݇ = ݇ to account for the 
outgoing nature of ߰ଵ,߰ଶ as ݔ → ∞, and ܿ is a constant to be determined such that the conditions at infinity given by (4.2) are 
satisfied. It can be easily shown that ߰ଵ,߰ଶ given by (4.3) satisfy the interface conditions (3.3) and for small ݎ they behave like 
ln ݏ It is to be noted here that in the absence of the upper liquid (i.e when .(cf. [10]) ݎ = 0), Δ(݇) = 0 has a simple real root 
݇ > 0, and an infinite number of purely imaginary roots of the form ±݅݇  (cf. [11]). 
ଵ߰ ,߰ଶ given by (4.3), may also be represented as follows : 
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ଵ߰ =
ܿ݅ߨ2
1 − ݏ

ቈ
݃(݇)
݂(݇) cosh݇(ℎ − (ݕ sinh ݇ܪ exp(݅݇ݔ) + 

(ߛ)݃
(ߛ)݂ cosh ℎ)ߛ − (ݕ sinh ܪߛ exp(݅ݔߛ)

−
(ߛ̅)݃
(ߛ̅)݂ cosh ߛ̅ (ℎ − (ݕ sinh ߛ̅ (ݔߛ̅݅−)ݔ݁ܪ

   ߰ଶ = −
ܿ݅ߨ2
1 − ݏ

ቈ
݃(݇)
݂(݇) cosh݇(ܪ + (ݕ sinh ݇ℎ exp(݅݇ݔ) + 

(ߛ)݃
(ߛ)݂ coshܪ)ߛ + (ݕ sinh ℎߛ exp(݅ݔߛ)

−
(ߛ̅)݃
(ߛ̅)݂ cosh ߛ̅ ܪ) + (ݕ sinh ߛ̅ ℎ ݁(ݔߛ̅݅−)ݔ

 

⎭
⎪
⎪
⎪
⎬

⎪
⎪
⎪
⎫

                        (4.4) 

Where                  ݂(ݔ) = sinh ℎݔ2 sinhଶܪݔ + ܪݔsinhଶܪݔ2 + ℎݔsinhଶ ݏ sinh ܪݔ2 +  ,ℎݔsinhଶ ܪݔݏ2
(ݔ)݃ = coshݔℎ sinh ܪݔ + ݏ cosh ܪݔ sinhݔℎ,                                                                            
ߛ = ߦݏ + ݅݇ ߛ̅    , = ߦݏ − ݅݇ ,     ݊ = 1,2,3, … … …                                                              

Infinity requirements, given by (4.2), are satisfied by choosing 

                                                    ܿ =
݅(1− ܦ(ݏ

ߨ2
                                                                                                                                            ( 4.5) 

where 

ܦ = ቂ(బ)
(బ)

sinh ݇ℎ sinh ݇ܪቃ
ିଵ

                                                                                              ZUsing (4.5) into (4.4), the functions 

ଵ߰ ,߰ଶ can be found, which are given by 

ଵ߰(ݔ, (ݕ = −
cosh݇(ℎ − (ݕ

sinh݇ℎ
exp(݅݇ݔ) − ܦ

(ߛ)݃
(ߛ)݂ coshߛ(ℎ − (ݕ sinh ܪߛ exp(݅ݔߛ)

ܦ+ 
(ߛ̅)݃
(ߛ̅)݂ cosh ߛ̅ (ℎ − (ݕ sinh ܪߛ̅ (ݔߛ̅݅−)ݔ݁

߰ଶ(ݔ, (ݕ =
cosh݇(ܪ + (ݕ

sinh ݇ܪ
exp(݅݇ݔ) + ܦ

(ߛ)݃
(ߛ)݂ cosh ܪ)ߛ + (ݕ sinh ℎߛ exp(݅ݔߛ)

ܦ−
(ߛ̅)݃
(ߛ̅)݂ cosh ߛ̅ ܪ) + (ݕ sinh ℎߛ̅ (ݔߛ̅݅−)ݔ݁ 

 

⎭
⎪
⎪
⎪
⎬

⎪
⎪
⎪
⎫

                                            (4.6) 

Exploiting (4.6) into (4.1), the solutions ߶ଵ ,߶ଶ  for the original boundary value problems described by (3.2) - (3.6) together with 
conditions at infinity given by (3.7), are obtained, which are given by 

߶ଵ(ݕ,ݔ) =
cosh݇(ℎ − (ݕ

sinh ݇ℎ
exp(−݅݇ݔ) − ܦ

(ߛ)݃
(ߛ)݂ cosh ℎ)ߛ − (ݕ sinh ܪߛ exp(݅ݔߛ)

ܦ+ 
(ߛ̅)݃
(ߛ̅)݂ cosh ߛ̅ (ℎ − (ݕ sinh ܪߛ̅ (ݔߛ̅݅−)ݔ݁

       ߶ଶ(ݔ, (ݕ = −
cosh݇(ܪ + (ݕ

sinh݇ܪ
exp(−݅݇ݔ) ܦ+

(ߛ)݃
(ߛ)݂ cosh ܪ)ߛ + (ݕ sinh ℎߛ exp(݅ݔߛ)

ܦ−
(ߛ̅)݃
(ߛ̅)݂ cosh ߛ̅ ܪ) + (ݕ sinh ℎߛ̅ (ݔߛ̅݅−)ݔ݁ 

 

⎭
⎪
⎪
⎪
⎬

⎪
⎪
⎪
⎫

                                   (4.7) 

Making use of (4.7) into (3.1), the velocity potentials Φଵ(ݔ, ,ݕ ,ݕ,ݔ)Φଶ ,(ݐ  have been found (see Appendix-I). The explicit (ݐ
expressions for Φଵ,Φଶ are given by 

Φଵ(ݔ, ,ݕ (ݐ =
cosh ݇(ℎ − (ݕ

sinh ݇ℎ
cos(kx + σt) − ܦ2 sin  (ݔ݇−)exp (݇)ݑݐߪ

      Φଶ(ݕ,ݔ, (ݐ = −
cosh݇(ܪ + (ݕ

sinh ݇ܪ
cos(kx + σt) + ܦ2 sin  (ݔ݇−)exp (݇)ݒݐߪ

 

⎭
⎪
⎬

⎪
⎫

                                                    (4.8) 

Φଵ,Φଶ represented by (4.8) are the velocity potentials for incoming water waves against a rigid vertical cliff in two immiscible 
liquids. 

V. SPECIAL CASE 
As a special case, if we make the assumption ݏ = 0 (which leads to one fluid medium), we find (see Appendix-II): 

ܦ =
2(2݇ℎ + sinh 2݇ℎ)

sinh 2݇ℎ
(݇)ݑ   , = −

cos݇(ℎ − (ݕ cos ݇ℎ
(2݇ℎ+ sin 2݇ℎ)  

so that 

Φଵ(ݔ, ,ݕ (ݐ =
cosh ݇(ℎ − (ݕ

sinh ݇ℎ
cos(kx + σt) +

4(2݇ℎ + sinh 2݇ℎ) sin ݐߪ
sinh 2݇ℎ


cos ݇(ℎ − (ݕ cos ݇ℎ

(2݇ℎ + sin 2݇ℎ)  exp (−݇ݔ)         (5.1) 
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The above expression for Φଵ(ݕ,ݔ,  is the velocity potential for a two-dimensional progressive wave train moving towards a (ݐ
rigid cliff in a single liquid of uniform finite depth `h'. 

To check, if one assumes 

߶ଵ →
cosh ݇(ℎ − (ݕ

sinh ݇ ℎ
exp(−݅݇ݔ),  instead of 

߶ଵ →
cosh ݇(ℎ − (ݕ

sinh ݇ ℎ
exp(−݅݇ݔ) ݔ ݏܽ  → ∞ 

In the calculations of Mandal and Kundu ([6]), the expression of  Φଵ(ݔ, ,ݕ  .for a single liquid given by (5.1) can be recovered ,(ݐ

VI. CONCLUSIONS 
A relatively simple approach to find the solution of the two dimensional incoming waves at the interface of two superposed 
liquids and progressing towards a rigid vertical cliff is demonstrated here. Assuming linear theory, the explicit expression for 
the velocity potentials in each of the two liquid are obtained where the lower and upper liquids to be of finite depth and finite 
height respectively. The major advantage of the method described in this work is that the solution of the corresponding problem 
in the absence of upper liquid can be found simply by the substitution of  ݏ = 0. This problem is a simplified mathematical 
model of the well known sloping beach problem arising in oceanography.  

Appendix-I: 

(݇)ݑ               =
ଵܪ] ଵܺ ଶܻ + ଶܪ ଵܺ ଵܻ − ଵܪ ଶܺ ଵܻ ଶܪ+ ଶܺ ଶܻ]

ଵܺ
ଶ + ଶܺ

ଶ , (݇)ݒ =
ଵܬ] ଵܺ ଶܻ + ଶܬ ଵܺ ଵܻ − ଵܬ ଶܺ ଵܻ + ଶܬ ଶܺ ଶܻ]

ଵܺ
ଶ + ଶܺ

ଶ , 

ଵܪ               = ଵܩ) cos ݔߦݏ − ଶܩ sin ,(ݔߦݏ ଶܪ                                       = ଵܩ) sin ݔߦݏ + ଶܩ cos  ,(ݔߦݏ
ଵܬ               = ଵܫ) cos ݔߦݏ − ଶܫ sin ,(ݔߦݏ ଶܬ                                            = ଵܫ) sin ݔߦݏ + ଶܫ cos  ,(ݔߦݏ
              ܺ = ܣ + ܤ + ܥ + ܦ ,                                                   ܻ = ܧ + ݅)  ,ܨ = 1,2) 

ଵܣ               =
1
2

(ℎ)ܴ(ܪ)ܲ] − (ℎ)ܵ(ܪ)ܳ − ܴ(ℎ)], ଶܣ                  =
1
2

(ℎ)ܵ(ܪ)ܲ] (ℎ)ܴ(ܪ)ܳ+ − ܵ(ℎ)], 

ଵܤ               = (ܪ)ܲ] − ℎߦݏ[1 − ,ℎ݇(ܪ)ܳ ଶܤ                               = (ܪ)ܲ] − 1]݇ℎ+  ,ℎߦݏ(ܪ)ܳ

ଵܥ               =
ݏ
2

[ܲ(ℎ)ܴ(ܪ) −ܳ(ℎ)ܵ(ܪ) − ,[(ܪ)ܴ ଶܥ                   =
ݏ
2

[ܲ(ℎ)ܵ(ܪ) + ܳ(ℎ)ܴ(ܪ) −  ,[(ܪ)ܵ

ଵܦ               = (ℎ)ܲ}]ݏ − ܪߦݏ{1 −ܳ(ℎ)݇ܪ], ଶܦ                          = (ℎ)ܲ}]ݏ − 1}݇ܪ +ܳ(ℎ)ߦݏܪ], 
ଵܧ               = ܶ(ℎ)ܸ(ܪ) − ܷ(ℎ)ܹ(ܪ), ଶܧ                                                = ܶ(ℎ)ܹ(ܪ) + ܷ(ℎ)ܸ(ܪ),  
ଵܨ               = (ℎ)ܸ(ܪ)ܶ]ݏ − ଶܨ                                           ,[(ℎ)ܹ(ܪ)ܷ = (ℎ)ܹ(ܪ)ܶ]ݏ +   ,[(ℎ)ܸ(ܪ)ܷ
ଵܩ               = ܶ(ℎ − (ܪ)ܸ(ݕ −ܷ(ℎ − ,(ܪ)ܹ(ݕ ଶܩ                                = ܶ(ℎ − (ܪ)ܹ(ݕ +ܷ(ℎ −  ,(ܪ)ܸ(ݕ
ଵܫ               = ܪ)ܶ + (ℎ)ܸ(ݕ − ܪ)ܷ + ,(ℎ)ܹ(ݕ ଶܫ                                  = ܪ)ܶ + (ℎ)ܹ(ݕ + ܪ)ܷ +  ,(ℎ)ܸ(ݕ
(ݔ)ܲ               = cosh ݔߦݏ2 cos 2݇(ݔ)ܳ                                                  ,ݔ = sinh ݔߦݏ2 sin 2݇ݔ, 
(ݔ)ܴ               = sinh ݔߦݏ2 cos 2݇(ݔ)ܵ                                                   ,ݔ = cosh ݔߦݏ2 sin 2݇ݔ, 

(ݔ)ܶ         = cosh ݔߦݏ cos݇(ݔ)ܷ                                                        ,ݔ = sinh ݔߦݏ sin ݇ݔ, 
(ݔ)ܸ               = sinh ݔߦݏ cos ݇(ݔ)ܹ                                                        ,ݔ = cosh ݔߦݏ sin ݇ݔ. 
Appendix-II:  Upon substitution ݏ = 0,  we have 

(ݔ)ܲ = cos 2݇ݔ, (ݔ)ܳ = (ݔ)ܴ = 0, (ݔ)ܵ = sin 2݇ݔ, ଵܣ = 0, ଶܣ = −sinଶ݇ܪ sin 2݇ℎ,     
ଵܤ  = 0, ଶܤ = −2݇ℎsinଶ݇ܥ    ,ܪଵ = ଶܥ = ଵܦ = ଶܦ = 0,          ଵܺ = 0,ܺଶ = −(2݇ℎ + sin 2݇ℎ) sinଶ݇ܪ 

(ݔ)ܶ      = cos݇ݔ, (ݔ)ܷ = (ݔ)ܸ = 0, (ݔ)ܹ = sin ݇ݔ, ଵܧ = 0, ଶܧ   = cos݇ℎ sin݇ܪ, ଵܨ    = ଶܨ = 0 
  ଵܻ = 0,    ଶܻ = cos݇ℎ sin ݇ܪ, ଵܩ   = 0, ଶܩ   = cos݇(ℎ − (ݕ sin ݇ܪ, ଵܪ   = 0, ଶܪ   = cos݇(ℎ − (ݕ sin ݇ܪ, 

݂(݇) = (2݇ℎ + sinh 2݇ℎ) sinhଶ݇ܪ, ݃((݇) = cosh ݇ℎ sin ݇ܪ, 

ܦ =
2(2݇ℎ + sinh 2݇ℎ)

sinh 2݇ℎ
, (݇)ݑ = −

cos݇(ℎ − (ݕ cos݇ℎ
(2݇ℎ + sin 2݇ℎ) . 
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