With an appropriate choice of the function , an anisotropic Axially Symmetric Space – time filled with perfect fluid in general relativity and also in the framework of gravity proposed by Harko et. al. (in arXiv: 1104. 2669 [gr-qc],2011) has been studied. The field equations have been solved by using the anisotropy features of the universe in Axially Symmetric Bianchi type- Space – time. We have been discussed some physical properties of the models. We observed that the involvement of new function does not affect the geometry of the space-time but slightly changes the matter distribution.
Introduction
Conclusion
In this paper we have presented an anisotropic Axially Symmetric space-time filled with perfect fluid in the framework of gravity proposed by Harko et. al.(2011) and in general relativity. The model (2.1) has no initial singularity for positive values of m. The spatial volume increases with time. Since the mean anisotropy parameter , the models do not approach isotropy for .For , from field equations, we can easily see that we will get only isotropic Zeldovich universe. As , the model decelerates. The involvement of new function doesn’t affect the geometry of the space-time but slightly changes the matter distribution. It is observed that the energy density and pressure tends to zero for large value of time t and spatial volume increases with time. For , the volume element of the model vanishes while all other parameters the scalar expansion , shear scalar and average Hubble parameter diverges. It is also observed that all the physical parameters are decreasing functions of time and they approach zero for large value of t.
References
[1] Bermann,M.S.: Nuovo Cimento B 74,182(1983)
[2] Carroll,S.M.,et al.: Phys.Rev.D, Part Fields 70,043528(2004)
[3] Chaubey,R.,Shukla, A.K.:Astrophys. Space Sci.343,415(2013)
[4] Harko, T.,Lobo,F.S.N.,Nojiri,S.,Odintsov,S.D.:(2011),arXiv:1104,2669[gr-qc]
[5] Nojiri,S.,Odintsov,S.D.:arXiv:hep-th/0307288(2003a)
[6] Nojiri,S.,Odintsov,S.D.: Phys.Lett.B 562,147.(2003b)
[7] Nojiri,S.,Odintsov,S.D.: Phys.Rev.D 68.(2003c)
[8] Reddy,D.R.K.,Santi Kumar.R.: Astrophys. Space Sci.344,253(2013)
[9] Rao,V.U.M.,Neelima,D.:Eur.Phys.J.Plus (2013)
[10] Reddy, D.R.K.,Naidu,R.L.,Satyanarayana,B.:Int.J.Theor.Phys.51,3222(2012a)
[11] Reddy, D.R.K., Santi Kumar.R., Naidu,R.L.: Astrophys. Space Sci.342,249 (2012b)
[12] Rao,V.U.M.,Neelima,D.: Astrophys. Space Sci.345,427(2013)
[13] Shamir,M.F., Jhangeer,A. and Bhatti A.A.:arXiv:1207.0708v1[gr-qc](2012)
[14] Bertolami, O. et al.:Phys. Rev. D 75,104016(2007)
[15] Nojiri,S.,Odintsov,S.D.: Phys.Rev.D 74,086.(2006)
[16] Sahoo, P.K., Mishra, B and Reddy, G. C: Eur. Phys. J. Plus (2014) 129: 49
[17] Pawar,D. D., Solanke, Y.S. : Turkish Journal of Physics (2014) doi:10.3906/_z-1404-1
[18] Reddy, D.R.K., Santikumar, R., Naidu, R.L.: Astrophys. Space Sci. 342, 249 (2012)
[19] Reddy, D.R.K., Santikumar, R., Pradeep Kumar, T.V.: Int. J. Theor.Phys. 52, 239 (2013)
[20] Yadav, A.K.: (2013). arXiv:1311.5885v1
[21] Sahoo, P.K., Mishra, B.: Can. J. Phys. 92, 1062 (2014)
[22] Ahmed, N., Pradhan, A.: Int. J. Theor. Phys. 53, 289 (2014)