Different drugs, dyes, agrochemicals, a few to list, require to unify two or more structural features. A unique and easily feasible solution is to employ Schiff’s bases. The ability of -C=N- part of Schiff’s bases enhances flexibility of the molecules and acts as a bridge for joining two distinct structural features. The synthetic procedures for the preparation of Schiff’s bases have been discussed with suitable examples. In addition, some useful applications of Schiff’s bases have been reported in the present work. The work is an attempt to understand the synthesis of Schiff’s bases and their uses.
Introduction
I. INTRODUCTION
Hugo Schiff, a German scientist, is credited with being the first to characterise the products of the reaction between primary amines and carbonyl compounds in 1864, giving rise to the phrase “Schiff's base” [1]. Schiff bases are a vast group of compounds considered by the existence of a double bond connecting the carbon and nitrogen atoms, the flexibility of which is produced in the several ways to combined with different alkyl or aryl substituents. This kind of compounds can be both found in nature and prepared in a laboratory [1].
Schiff bases, also known as azomethines or imines, are compounds that in a broad sense possess the general formula R3R2C=NR1. The substituents R2 and R3 may be alkyl, phenyl, heteroaryl, hydrogen. The substituent R1 at the nitrogen of imino (C=N) may be an alkyl, phenyl, heteroaryl, hydrogen or a metal (mostly Si, Al, B, Sn). A Schiff base resulting from aniline, where R3 is a phenyl or a substituted aryl, can be called an ‘anil’. Therefore, Schiff bases can be considered as a nitrogen equivalent of an aldehyde or a ketone in which the carbonyl group (C=O) has been substituted by an imine or azomethine group. The name “Organic Bases” first appeared in a German paper entitled “Eine neue Reihe organischer Basen” (“A New Series of Organic Bases”) [2], though, they are not used as bases in the conventional sense, the designation of these compounds as bases, has persisted till this date.
The Schiff bases act as L-type ligands (like amines, amides, and phosphines) or ligands having two electron donors, which do not undergo electron modifications on their valence shells, in order to form co-ordination compounds with ions of transition elements [3]. The d-block metal ion forms coordination-bond by the electron-donating ligand atom during the coordination compound formation, which alters the metal's steric and electronic environment. As a result, reactivity of the ion of metal is stabilised and controlled, which is valuable for less stable ions at elevated oxidation states (O.S.) [3,4]. In the latter half of the 19th century, profound interest in applying transition metal complexes with different Schiff bases to medicinal and similar applications started to grow.
Schiff bases are referred to as auxiliary ligands because, unlike reactive ligands, they do not go through irreversible transformations themselves. Instead, they modify the structure and reactivity of the transition metal ion in the centre of the complex [3,4].
II. SYNTHETIC STRATEGIES FOR SCHIFF BASES
Hugo Schiff [2] first described the interaction of aniline with aldehydes in 1864, which is when the chemistry of Schiff's bases first emerged. The method involved Dean Stark apparatus for removal of water molecule to favour condensation to give imines.
Conclusion
The present work is an attempt to highlight the importance of Schiff’s bases and their applications. The synthetic protocols mostly involve dehydration using an amine with an appropriate aldehyde or ketone. Organometallic reagents and molecular sieves have appeared as attractive alternatives with improved yields. Further, Schiff’s bases are largely used as a part pharmacophore for different drugs, as the group enhances flexibility and allows the introduction of novel groups or rings. In majority of drugs, the -C=N- moiety of Schiff’s bases acts as a bridge or linker to club two different structural features. The work could be beneficial to organic and synthetic chemists.
References
[1] Raczuk, E., Dmochowska, B., Samaszko-Fiertek, J., & Madaj, J. (2022). Different Schiff Bases—Structure, Importance and Classification. Molecules, 27(3), 787. doi: 10.3390/molecules27030787.
[2] Schiff, H. (1864). Mittheilungen aus dem Universitätslaboratorium in Pisa: Untersuchungen ü das Chinolin. Annalen der Chemie und Pharmacie, 131(1), 112-117. doi: 10.1002/jlac.18641310112.
[3] Lundgren, R.L.; Stradiotto, M. (2016). Ligand Design in Metal Chemistry: Reactivity and Catalysis; Key Concepts in Ligand Design: An Introduction, John Wiley & Sons, Ltd.: Chichester, UK; Hoboken, NJ, USA, 1–13.
[4] Fryzuk, M.D.; Haddad, T.S.; Berg, D.J.; Rettig, S.J. (1991). Phosphine complexes of the early metals and the lanthanoids, Pure Appl. Chem., 63, 845–850.
[5] Hashim J. Aziz, H. H. A. (2010). Synthesis of a New Series of Schiff Bases Using Both Traditional and the Ultrasonic Techniques. Tikrit Journal of Pure Science, 15(3), 70-74.
[6] Parekh, J., Inamdhar, P., Nair, R., Baluja, S., & Chanda, S. (2005). Synthesis and antibacterial activity of some Schiff bases derived from 4-aminobenzoic acid. Journal of the Serbian Chemical Society, 70(10), 1155-1162. doi: 10.2298/jsc0510155p.
[7] Claisen, L. (1896). Ueber eine eigenthümliche Umlagerung. Berichte der deutschen chemischen Gesellschaft, 29(3), 2931-2933. doi: 10.1002/cber.189602903102.
[8] Houben, J., & Fischer, W. (1929). Formation of aromatic nitriles by basic hydrolysis of trichloromethyl aryl ketimines. Acidic hydrolysis yields ketones. Journal für Praktische Chemie, 123(1), 262-275. doi: 10.1002/prac.19291230117
[9] Bhagat, S., Sharma, N., & Chundawat, T. S. (2013). Synthesis of Some Salicylaldehyde-Based Schiff Bases in Aqueous Media. Journal of Chemistry, 2013, 1-4. doi: 10.1155/2013/909217.
[10] Viehe, H. G., Buijle, R., Fuks, R., Merényi, R., & Oth, J. M. F. (1967). Acylation, Alkylation, and Protonation of Alkynylamines. Angewandte Chemie International Edition in English, 6(1), 77-78. doi: 10.1002/anie.196700771.
[11] Love, B. E., & Ren, J. (2002). Synthesis of sterically hindered imines. The Journal of Organic Chemistry, 58(20), 5556-5557. doi: 10.1021/jo00072a051.
[12] Abdurrafi, F. F. H., Hanapi, A., & Ningsih, R. (2020). Synthesis of schiff base compound from vanillin and aniline volume variations of acid catalyst from Belimbing Wuluh using grindstone method. IOP Conference Series: Earth and Environmental Science, 456(1), 012018. doi: 10.1088/1755-1315/456/1/012018.
[13] Chakraborti, A. K., Bhagat, S., & Rudrawar, S. (2004). Magnesium perchlorate as an efficient catalyst for the synthesis of imines and phenylhydrazones. Tetrahedron Lett, 45(41), 7641-7644. doi: 10.1016/j.tetlet.2004.08.097.
[14] Varma, R. S., Dahiya, R., & Kumar, S. (1997). Clay catalyzed synthesis of imines and enamines under solvent-free conditions using microwave irradiation. Tetrahedron Lett, 38(12), 2039-2042. doi: 10.1016/s0040-4039(97)00261-x.
[15] Vass, A., Dudás, J., & Varma, R. S. (1999). Solvent-free synthesis of N-sulfonylimines using microwave irradiation. Tetrahedron Lett, 40(27), 4951-4954. doi: 10.1016/s0040-4039(99)00867-9.
[16] Naeimi, H. S., F.; Rabiei, K. (2006). Mild and convenient one pot synthesis of Schiff bases in the presence of P2O5/Al2O3 as new catalyst under solvent-free conditions. Journal of Molecular Catalysis a Chemical, 260(1), 100-104(105).
[17] Sun, X.-H., Tao, Y., Liu, Y.-F., Chen, B., Jia, Y.-Q., & Yang, J.-W. (2008). Synthesis and Biological Activities of Alkyl Substituted Triazolethione Schiff Base. Chinese Journal of Chemistry, 26(6), 1133-1136. doi: 10.1002/cjoc.200890202.
[18] Wang, H., Zhang, J., Cui, Y.-M., Yang, K.-F., Zheng, Z.-J., & Xu, L.-W. (2014). Dehydrogenation and oxidative coupling of alcohol and amines catalyzed by organosilicon-supported TiO2@PMHSIPN. RSC Advances, 4(65), 34681. doi: 10.1039/c4ra06685e.
[19] Westheimer, F. H., & Taguchi, K. (2002). Catalysis by molecular sieves in the preparation of ketimines and enamines. The Journal of Organic Chemistry, 36(11), 1570-1572. doi: 10.1021/jo00810a033.
[20] Look, G. C., Murphy, M. M., Campbell, D. A., & Gallop, M. A. (1995). Trimethylorthoformate: A mild and effective dehydrating reagent for solution and solid phase imine formation. Tetrahedron Lett, 36(17), 2937-2940. doi: 10.1016/0040-4039(95)00442-f.
[21] R. Dalpozzo, A. D. N., M. Nardi, B. Russo, A. Procopio. (2006). Erbium (III) Triflate: A Valuable Catalyst for the Synthesis of Aldimines, Ketimines, and Enaminones. Synthesis, 7, 1127-1132.
[22] Sun, Q., Zheng, F., Sun, X., & Wang, W. (2009). Construction of a dinuclear silver(I) coordination complex with a Schiff base containing 4-amino-1,2,4-triazole ligands. Acta Crystallogr Sect E Struct Rep Online, 65(Pt 3), m283-284. doi: 10.1107/S1600536809004760.
[23] Wang, P. H., Keck, J. G., Lien, E. J., & Lai, M. M. C. (2002). Design, synthesis, testing, and quantitative structure-activity relationship analysis of substituted salicylaldehyde Schiff bases of 1-amino-3-hydroxyguanidine tosylate as new antiviral agents against coronavirus. Journal of Medicinal Chemistry, 33(2), 608-614. doi: 10.1021/jm00164a023.
[24] Karthikeyan, M. S., Prasad, D. J., Poojary, B., Subrahmanya Bhat, K., Holla, B. S., & Kumari, N. S. (2006). Synthesis and biological activity of Schiff and Mannich bases bearing 2,4-dichloro-5-fluorophenyl moiety. Bioorganic & Medicinal Chemistry, 14(22), 7482-7489. doi: 10.1016/j.bmc.2006.07.015.
[25] Langheld, K. (1909). Über das Verhalten von ?-Aminosäuren gegen Natriumhypochlorit. Berichte der deutschen chemischen Gesellschaft, 42(2), 2360-2374. doi: 10.1002/cber.190904202134.
[26] Reddelien, G. (1920). Über die Zersetzung von Anilen. (Über die katalytische Wirkungsweise von Halogenwasserstoffsäuren bei Kondensationen, II). Berichte der deutschen chemischen Gesellschaft (A and B Series), 53(2), 355-358. doi: 10.1002/cber.19200530233.
[27] Pickard, P. L., & Young, C. W. (1951). Ketimines. III. ?-Cyclohexylalkyl Alkyl Type1. Journal of the American Chemical Society, 73(1), 42-43. doi: 10.1021/ja01145a016.
[28] Pickard, P. L., & Tolbert, T. L. (1961). An Improved Method of Ketimine Synthesis. The Journal of Organic Chemistry, 26(12), 4886-4888. doi: 10.1021/jo01070a025.
[29] Hart, D. J., Kanai, K., Thomas, D. G., & Yang, T. K. (2002). Preparation of primary amines and 2-azetidinones via N-(trimethylsilyl)imines. The Journal of Organic Chemistry, 48(3), 289-294. doi: 10.1021/jo00151a002.