Ni0.4Cu0.3Zn0.3Gd0.125Fe1.875O4 spinel ferrite powder is successfully synthesized using sol-gel auto combustion technique. The structural, optical and magnetic properties investigated by using X-ray Diffractometer, FTIR Spectrometer, Scanning Electron Microscope and Vibrating Sample Magnetometer (VSM). XRD analysis confirmed that formation of Nano crystalline cubic spinel structure of the sample. The crystallite size of synthesized nanoparticles is about 29.45nm. The IR study support the confirmation spinel structure of Ni0.4Cu0.3Zn0.3Gd0.125Fe1.875O4 sample. Band gap energy Eg obtained using UV-Visible absorption data is about 2.4238 eV. The magnetic properties have been studied from VSM data shows that Ni0.4Cu0.3Zn0.3Gd0.125Fe1.875O4 spinel ferrite is a soft magnetic material.
Introduction
Conclusion
In Conclusion, Ni0.5Cu03Zn0.3Gd0.125Fe1.875O4 mixed spinel ferrite is prepared via a sol-gel combustion method. XRD pattern revealed that formation of a cubic spinel ferrite structure. IR study concluded that prepared ferrite has cubic spinel ferrite structure. The study of magnetic properties concluded that Ni0.5Cu03Zn0.3Gd0.125Fe1.875O4 Nano ferrite is a soft magnetic material and can be used in cores, coils of low inductance, and in memory storage devices.
References
[1] J. A. Paiva, M. P. Graça, et al., (2009), “Spectroscopy studies of NiFe2O4 nanosized powders obtained using coconut water,” J. Alloys and Compo., vol. 485, pp. 637–641.
[2] M. M. Krupa and I. V. Sharay, (2014), “Magnetic and magneto optical properties of Fe3O4 and NiFe2O4 nanoparticles,” Function. Mater. vol. 21, pp 15.
[3] A. Hao, M. Ismail, S. He, N. Qin, et al, (2018) “ Enhanced resistive switching and magnetic properties of Gd-doped NiFe2O4 thin films prepared by chemical solution deposition method,” Mater. Sci. Eng., B, 229, pp86?95.
[4] W. Eerenstein, N. D. Mathur, J. F. Scott,(2006),“Multi-ferric and magneto-electric materials,” Nature 442, pp759?765.
[5] U. Lu?ders, A. Barthélémy, M. Bibes, et al., (2006), “NiFe2O4: A versatile spinel material brings new opportunities for spintronics”. Adv. Mater. 18, pp.1733?1736,
[6] J. Smit, H.P.J. Wijn. Ferrites, Philips Technical Library, Eindhoven, 1959.
[7] A. M. Bhavikatti, S. kulkarni, A. Lagashetty, (2010), Magnetic and transport properties of Cobalt ferrite” ,I Journal of Electr. Eng. Res., Vol. 2, pp. 125-134.
[8] P. I. Slick, Ferrites for Non-Microwave Applications’’ North Holland, Amsterdam, Vol. 2, 1980.
[9] Hai-Bo Wang, Jin Hong Liu, Wen Fing Li, et al., (2010) “Structural, dynamic magnetic and dielectric properties of Ni0.15Cu0.2Zn0.65Fe2O4 ferrite produced by NaOH co-precipitation method”, J. Alloys Compd, Vol. 461 (1-2) pp373-377.
[10] R. N. Bhowmik, N. Naresh, (2010), “Structure, ac conductivity and complex impedance study of Co3O4 and Fe3O4 mixed spinel ferrites”, Int. Journal of Eng., Sci. and Tech., Vol. 2, pp. 40-52. DOI: 10.4314/ijest.v2i8.63779
[11] I. Chicinas, (2006), “Soft magnetic nanocrystalline powders produced by mechanical alloying routes”, Jjournal of Optoelectronics and Advanced Materials, Vol. 8, pp. 439-448.
[12] S. Zahi, M. Hashim, A.R. Daud, “Synthesis, magnetic properties and microstructure of Ni–Zn ferrite by sol–gel technique”, Journal of Magnetism and Magnetic Materials, Vol. 308 (2), pp177–182, 2007.
[13] I. H. Gul, W. Ahmed, A. Maqsood, “Electrical and magnetic characterization of nanocrystalline Ni–Zn ferrite synthesis by Co-precipitation route”, Journal of Magnetism and Magnetic Materials, 320(3-4) pp270–275, 2008.
[14] X. Jiao, D. Chen, Y. Hu, (2002). “Hydrothermal synthesis of Nano crystalline Mx(Zn1 – x)Fe2O4 (M = Ni, Mn, Co; x = 0.40–0.60) powders”, Materials Research Bulletin, Vol. 37 (9), pp1583–1588.
[15] A. Takayama, M. Okuya, S. Kaneko, (2004)\"Spray pyrolysis deposition of NiZn ferrite thin films, Solid State Ionics, Vol. 172 (1-4), pp257-260.
[16] S. Balaji, K. Kalai Selvan, L. John Berchmans, et al, (2005). “Combustion synthesis and characterization of Sn4+ substituted nanocrystalline NiFe2O4”, Materials Science and Engineering B, Vol. 119(2) pp119-124.
[17] K. Praveena and K. Sadhana, (2015), “Ferromagnetic Properties of Zn substituted Spinel Ferrites for High Frequency Applications”, International Journal of Scientific and Research Publications Vol. 5 (40), pp1-20. http://ijsrp.org/
[18] C. Kittel, P. Mc Euen,. “Introduction to solid state physics”, 8 323-324 New York: Wiley 1996.
[19] V. Chaudhari, S. E. Shirsath, M. L. Mane, R. H. Kadam, S. B.Shelke, D. R. Mane, (2013), “Crystallographic, magnetic and electrical properties of Ni0.5Cu0.25Zn0.25LaxFe2?xO4 nanoparticles fabricated by sol-gel method”, J. Alloys Compd., Vol. 549, pp213?220, DOI:10.1016/j.jallcom.2012.09.060
[20] K. Kombaiaha, J. Judith Vijayaa, L. John Kennedy, M. Bououdina, R. Jothi Ramalingamd, Hamad A. Al-Lohedan, (2017),“Comparative investigation on the structural, morphological, optical, andmagnetic properties of CoFe2O4 nanoparticles”, Ceramics International Vol. 43 pp7682–7689. http://dx.doi.org/10.1016%2Fj.ceramint.2017.03.069.
[21] Kryszewski M. and J. K. Jeszka, (1998) “Nanostructured conducting polymer composites-super paramagnetic particles in conducting polymers”, Synthetic Metals Vol. 94, pp99–104.
[22] Sonia, M. M. L., Blessi S., Pauline S. (2014), “Effect of copper substitution on the structural, morphological and magnetic properties of nickel ferrites”, International Journal of Research Vol. 1, pp1051-1054.
[23] W. Zhang, A. Sun, X. Zhao, N. Suo, L. Yu, Z. Zuo,(2019), “Structural and magnetic properties of La3+ ion doped Ni–Cu–Co nano ferrites prepared by sol–gel auto-combustion method”, Journal of Sol-Gel Science and Technolog, Vol. 90 pp599-610.
[24] H. Nayakv, et al.,(2014),“Decomposition of ? - irradiated La2(C2O4)3 + CuO mixture: a non-isothermal study”, Radiation effects and defects in solids, Vol. 159 pp93-106.
[25] N. Himansulal, (2015),“Kinetics Study on the Thermal Decomposition of Lanthanum Oxalate Catalysed by Zn-Cu Nano Ferrites”, Res. J. of Material Sciences, 3(2) pp1-8..
[26] A. Okamoto, (2015),“ The Invention of ferrites and their contribution to miniaturization of radios”, IEEE Globecom workshop Honolulu, Hi,USA,1-6,doi10.1109/ GLOCOMW2009.5360693
[27] M. Hoppe, S. Döring, M. Gorgoi, S. Cramm, M. Muller, (2015),“Enhanced ferrimagnetism in auxetic NiFe2O4 in the crossover to the ultrathin-film limit”, Phys. Rev. B. Condens. Matter Mater. Phys. Vol. 91 pp 054418. http://dx.doi.org/10.1103/PhysRevB.91.054418.
[28] K. Kamala K. Bharathi, P. N. Santhosh, M. Pattabiraman, G. Markandeyulu, (2008) “Magneto capacitance in Dy doped Ni ferrite”. Phys. Rev. B: Condens. Matter Mater. Phys., Vol. 77 pp 172401. http://dx.doi.org/10.1103/PhysRevB.77.172401.
[29] Kamala K. Bharathi, G. Markandeyulu, (2015), “Ferroelectric and ferromagnetic properties of Gd substituted nickel ferrite”, J. Appl. Phys. Vol.10, pp07E309, 2015. http://dx.doi.org/10.1063/1.2839281.
[30] Huixue Yao, Xueer Ning, et al., (2015), “Effect of Gd-Doping on Structural, Optical, and Magnetic Properties of NiFe2O4 As-prepared Thin Films via Facile Sol?Gel Approach”, ACS Omega, Vol. 6 pp6305-6315. , http://dx.doi.org/10.1021/acsomega.0c06097.