In this short note, we give an algorithm to compute the unit group of a semisimple group algebra for any . To show the practicality of the algorithm, we explicitly find the unit groups of the semisimple group algebras , , and .
Introduction
References
[1] G. K. Bakshi, S. Gupta, I. B. S. Passi, “The algebraic structure of finite metabelian group algebras”, Comm. Algebra, 43(1), (2015), 2240-2257.
[2] R. A. Ferraz, “Simple components of the center of ”, Comm. Algebra, 36(9), 3191-3199, 2008.
[3] W. Fulton, Young tableaux, with applications to representation theory and geometry, Cambridge University Press, 1997.
[4] G. D. James, The representation theory of the symmetric groups, Springer, 1978.
[5] M. Khan, R. K. Sharma, J. B. Srivastava, “The unit group of ”, Acta Math. Hungar., 118 (1-2), 105-113, 2008.
[6] C. P. Milies, S. K. Sehgal, An introduction to group rings, Kluwer Acad. Pub., 2002.
[7] G. Mittal, R. K. Sharma, “On unit group of finite group algebras of non-metabelian groups upto order 72”, Math. Bohemica, 146(4), 429-455, 2021.
[8] G. Mittal, R. K. Sharma, “Unit group of semisimple group algebras of some non-metabelian groups of order 120”, Asian-European J. Math., 15(3), 2250059, 2022.
[9] G. Mittal, R. K. Sharma, “Computation of Wedderburn decomposition of groups algebras from their subalgebra”, Bull. Korean Math. Soc., 59(3), 781-787 2022.
[10] G. Mittal, R. K. Sharma, “Wedderburn decomposition of a semisimple group algebra from a subalgebra of factor group of ”, Int. Elect. J. Algebra, 32, 91-100, 2022.
[11] G. Mittal, R. K. Sharma, “On unit group of finite group algebras of non-metabelian groups of order 108”, J. Algebra Comb. Discrete Appl., 8(2), 59-71, 2021.
[12] B. Sagan, The Symmetric Group. Representations, Combinatorial Algorithms, and Symmetric Functions, Springer-Verlag, 2001.
[13] M Sahai, SF Ansari , “Unit groups of the finite group algebras of generalized quaternion groups”, J. Algebra Its Appl., , .
[14] R. K. Sharma, J. B. Srivastava, M. Khan, “The unit group of ”, Acta Mathematica Academiae Paedagogicae Nyiregyhaziensis, 23(2), 129-142, 2007.
[15] R. K. Sharma, G. Mittal, “ Unit group of semisimple group algebra ”, Math. Bohemica, 147(1), 1-10, 2022.