Although siltation is a natural process, human activity can speed it up and cause serious issues for reservoirs, lowering their usable volume for irrigation. One illustration of this issue was the Yusmerg dam\'s mirror water area shrinking by 48.3% over the course of 20 years. Thus, the purpose of this study was to assess the siltation and sediment production of the dam using a methodology that may be used for small earth dams used for agriculture. The amount of silt deposited in the reservoir was tracked for this purpose every month of the year. With a retention sediment percentage ranging from 53.9 to 94.5% and a high specific sediment output, the Yusmerg dam will fully silt in a maximum of 57 years. Restoring permanent preservation areas and clearing 17,500 m3 of silt from the dam\'s riverbed should be done as little as possible.
Introduction
I. INTRODUCTION
The deposition of sediment carried by water courses is known as siltation, and it occurs when the kinetic energy of the particles falls below what is required to maintain their suspension. The saturation value (CARVALHO, 2008) defines this dynamic and is dependent on the sediment's specific weight, particle size, and flow rate as well as the slope of the water courses. Although this is a natural process, it can worsen owing to poor soil management, which can lead to a decrease in the water's quality and availability (POLETO et al., 2010). Increased soil loss and sediment concentration in water are caused by the shift in land use, with farm and urban perimeters connected to the average slope in the basins (VANZELA et al., 2010; MINGOTI & VETTORAZZI, 2011), exacerbating the siltation process. This happens because a decrease in the soil's infiltration rate causes surface runoff to increase (GOMES et al., 2007), which in turn increases the water's kinetic energy and maximizes its ability to carry sediment.
OLIVEIRA et al. (2011) state that the destruction of the vegetation along riverbanks has major effects on the ecosystem, including siltation, pollution, and contamination from agricultural goods. WU et al. (2012) obtained effects similar to these, quantifying the anthropogenic and climatic impacts on sediment production. It was noted that in the 1980s, deforestation caused the sediment load of the Pearl River (Zhujiang), China, to increase by nearly 20%, even with the construction of dams.
The principal effects of anthropogenic soil use on the watershed include those that have to do with busbars' decreasing usable lives. These hydraulic constructions are man-made works of art that change the flow regime and make them more prone to silting. The widening of the cross section, which lowers the flow velocity of water, provides an ideal environment for the deposition of solid materials carried by the water channel or arising from runoff from the watershed (ALBERTIN et al., 2010; SANTOS & HERNANDEZ 2013). However, this characteristic is what causes the sediment load in rivers with dams to significantly decrease (SYVITSKI & KETTNNER, 2011). Rainfall patterns and the short-term temporal fluctuation of sediment generation in watersheds are connected. The reservoirs, also known as dikes, are crucial for regional development and water resource management because, in the current context, they are primarily used for irrigation, drought control, hydroelectricity, and urban water supply (UNITED NATIONS ENVIRONMENTAL PROGRAMME, 2007). Consequently, the decreased water supply brought on by silting in the reservoirs may have detrimental effects on regional growth, particularly in cities that rely on these systems for agriculture.
II. STUDY AREA
Yusmarg or Yousmarg (meaning 'Meadow of Jesus') is a hill station in the western part of the Budgam district of Jammu and Kashmir, India. It is situated 53 km (33 mi) south of Srinagar, the summer capital of the state. It lies at an altitude of 2,396 m (7,861 ft.) above sea level. It lies between the geographical coordinates of 33.8316° N, 74.6644° E. It is located in the Pir Panjal peaks, a sub range of Himalaya. Yusmarg of district Budgam experiences temperate climate, where summers are mild while winters are extremely cold and chilly.
References
[1] FILIZOLA JÚNIOR, N. P.; SANTOS, P. M. C.; LIMA, J. E. F. W. Guia de avaliação de assoreamento de reservatórios. Brasília: ANEEL, 2000. 107p.
[2] CENTRO INTEGRADO DE INFORMAÇÕES AGROMETEOROLÓGICAS. Dados climáticos da estação agrometeorológica de Fernandópolis - SP. Disponível em: . Acesso em: 20 mar. 2012.
[3] DOORENBOS, J.; KASSAN, A.H. Yeld response to water. Rome: FAO, 1983. 193 p. (Irrigation and Drainage Paper, 33).
[4] GOMES, N. M.; FARIA, M. A. DE; SILVA, A. M. DA; MELLO, C. R. DE; VIOLA, M. R. Variabilidade espacial de atributos físicos do solo associados ao uso e ocupação da paisagem. Revista Brasileira de Engenharia Agrícola e Ambiental, Campina Grande, v.11, n.4, p.427-435, 2007.
[5] GRAVETTER, F. J.; WALLNAU, L. B. Statistics for the behavioral sciences. 2nd.ed. St. Paul: West Publishing, 1995. 429p.
[6] HOPKINS, W. G. A new view of statistics. Internet Society for Sport Science. Disponível em: http://www.sportsci.org/resource/stats/. Acesso em: 23 jan. 2008. Evaluation of sediment production and siltation in a small earth dam in Fernandópolis, SP Eng. Agríc., Jaboticabal, v.34, n.5, p. 912-924, set./out. 2014 923
[7] HU, B.; YANG, Z.; WANG, H.; SUN, X.; BI, N.; LI, G. Sedimentation in the Three Gorges Dam and the future trend of Changjiang (Yangtze River) sediment flux to the sea. Hydrology and Earth System Sciences, Goettingen, v.13, p.2253-2264, 2009.
[8] LU, X. X.; SIEW, R. Y. Water discharge and sediment flux changes over the past decades in the Lower Mekong River: possible impacts of the Chinese dams. Hydrology and Earth System Sciences, Goettingen, v.10, p.181-195, 2006.
[9] MEDEIROS, P. R. P.; KNOPPERS, B.; SOUZA, W. F. L.; OLIVEIRA, E. N. Aporte de material em suspensão no baixo rio SÃO FRANCISCO (SE/AL), em diferentes condições hidrológicas. Brazilian Journal of Aquatic Science and Technology,
[10] Itajai, v.5, n.1, p.42-53, 2011. MELO, C. de A.; MOREIRA, A. B.; BISINOTI, M. C. Perfil espacial e temporal de poluentes nas águas da represa municipal de São José do Rio Preto, São Paulo, Brasil. Química Nova, São Paulo, v.32, n.6, p.1436-1441, 2009.
[11] MINGOTI, R.; VETTORAZZI, C. A. Relative reduction in annual soil loss in micro watersheds due to the relief and forest cover. Revista Brasileira de Engenharia Agrícola, Jaboticabal, v.31, n.6, p.1202-1211, 2011.
[12] OLIVEIRA, J. B.; CAMARGO, M. N.; ROSSI, M.; CALDERANO FILHO, B. Mapa pedológico do Estado de São Paulo: legenda expandida. Campinas: Instituto Agronômico/EMBRAPA Solos, 1999. 64p.
[13] OLIVEIRA, L. C. de; PEREIRA, R.; VIEIRA, J. R. G. Análise da degradação ambiental da mata ciliar em um trecho do Rio Maxaranguape-RN: uma contribuição à gestão dos recursos hídricos do Rio Grande do Norte - Brasil. Holos Environment, Rio Claro, v.5, p.49-66, 2011.
[14] PEREIRA, A. R.; ANGELOCCI, L. R.; SENTELHAS, P. C. Agrometeorologia: fundamentos e aplicações práticas. Guaíba: Agropecuária, 2002. 478p.
[15] POLETO, C.; CARVALHO, S. L. de; MATSUMOTO, T. Avaliação da qualidade da água de uma microbacia hidrográfica no município de Ilha Solteira (SP). Holos Environment, Rio Claro, v.10, p.95-110, 2010.
[16] ROLIM, G. de S.; CAMARGO, M. B. P. DE; LANIA, D. G.; MORAES, J. F. L. de. Classificação climática de Köppen e de Thornthwaite e sua aplicabilidade na determinação de zonas agroclimáticas para o Estado de São Paulo. Bragantia, Campinas, v.66, p.711-720, 2007.
[17] SANTANA, J. A. V.; COELHO, E. F.; FARIA, M. A.; SILVA, E. L.; DONATO, S. L. R . Distribuição de raízes de bananeira prata-anã no segundo ciclo de produção sob três sistemas de irrigação. Revista Brasileira de Fruticultura, Jaboticabal, v. 34, p. 124-133, 2012.
[18] SANTOS, G. O.; HERNANDEZ, F. B. T. Uso do solo e monitoramento dos recursos hídricos no córrego do Ipê, Ilha Solteira, SP. Revista Brasileira de Engenharia Agrícola e Ambiental, Campina Grande, v.17, n.1, p.60-68, 2013.
[19] SILVA, A. E. P.; ANGELIS, C. F.; MACHADO, L. A. T.; WAICHAMAN, A. V. Influência da precipitação na qualidade da água do Rio Purus. Acta Amazonica, Manaus, v.38, n.4, p. 733-742, 2008.
[20] SILVA JUNIOR, V. P.; MONTENEGRO, A. A. A.; SILVA, T. P. N.; GUERRA, S. M. S.; SANTOS, E. S.; Produção de água e sedimentos em bacia representativa do semiárido pernambucano. Revista Brasileira de Engenharia Agrícola e Ambiental, Campina Grande, v.15, n.10, p.1073-1081, 2011.
[21] SOUZA FILHO, E. E. As barragens na bacia do rio Paraguai e a possível influência sobre a descarga fluvial e o transporte de sedimentos. Boletim de Geografia, Maringá, v.31, n.1, p.117-133, 2013.
[22] Luiz S. Vanzela, Diego L. G. Grecco, José N. Da Costa Neto, et al. Eng. Agríc., Jaboticabal, v.34, n.5, p. 912-924, set./out. 2014 924
[23] STEPHENS, T. Manual on small earth dams: a guide to siting, design and construction. Rome: FAO Irrigation and Drainage, 2010. 114p. (Paper 64). SYVITSKI, J. P. M.; KETTNER, A. Sediment flux and the Anthropocene. Philosophical Transactions of The Royal Society A, London, v.369, p.957-955, 2011.
[24] VANZELA, L. S. Evolução da paisagem do município de Fernandópolis - SP. In: PREFEITURA DE FERNANDÓPOLIS (Org.). Fernandópolis nossa história, nossa gente. São Paulo: Anglo, 2012. v.2, p. 246-266.
[25] VANZELA, L. S.; HERNANDEZ, F. B. T. H.; FRANCO, R. A. M. Influência do uso e ocupação do solo nos recursos hídricos do Córrego Três Barras, Marinópolis. Revista Brasileira de Engenharia Agrícola e Ambiental, Campina Grande, v.14, n.1, p.55–64, 2010.
[26] TUNDISI, J. D.; TUNDISI, T. M. Impactos potenciais das alterações do Código Florestal nos recursos hídricos. Biota Neotropica, Campinas, v.10, n.4, p.67-75, 2010.
[27] UNITED NATIONS ENVIRONMENTAL PROGRAMME. Dams and development: relevant practices for improved decision-making. Nairobi: UNEP, 2007. 176p.
[28] WU, C. S.; YANG, S. L.; LEI, Y. Quantifying the anthropogenic and climatic impacts on water discharge and sediment load in the Pearl River (Zhujiang), China (1954–2009). Journal of Hydrology, Amsterdam, v.452-453, p.190-204, 201