A few interesting characteristics among the solutions and the patterns of non-zero integral solutions to the non-homogeneous cubic equation with three unknowns represented by the Diophantine equation are examined.
Introduction
Conclusion
In this paper, we\'ve employed diverse substitutions to seek integral solutions for the non-homogeneous ternary cubic equation. These same substitutions can be applied to solve analogous equations.
References
[1] David M. Burton “Elementary Number Theory”, Sixth edition, Tata mc graw hill edition.
[2] Neville Robbins “Beginning Number Theory”, Second edition, Naroa Publishing House.
[3] Gareth A. Jones and J. Marry Jones “Elementary Number Theory”, Springer international edition.
[4] Dr. Sudhir K. Pundir and Dr. Rimple Pundir “Theory of Numbers”, Second edition, Published by: K.K. Mittal prakashan, meerut-250001, Laser typesetting.
[5] Thomas Koshy “Elementary Number Theory with Applications”, Published by Elsevier, a division of Reed Elsevier India private limited, 17-A/1, Main Ring Road, Lajpat Nagar-Iv,New Delhi-110 024,India.
[6] M.A.Gopalan, P.Shanmuganadham and A.Vijayashankar, (2008), “On Binary Quadratic Equation ”,Acta Ciencia Indica, Vol .XXXIVM.NO.4,pp.1803-1805.
[7] P.Saranya, G. Janaki, “On the Exponential Diophantine Equation ”, International Research Journal of Engineering and Technology, Vol 4, Issue 110, pp: 1042-1044, 2017.
[8] C.Saranya, G, Janaki, “ Observations on the Ternary Quadratic Diophantine Equation ”, Jamal Academic Research Journal- An Interdisciplinary,Special Issue,February 2016, pg no.305-308,Impact Factor, ISSN No: 0973-0303.
[9] G. Janaki, P. Saranya, “On the Ternary Quadratic Diophantine Equation ”, Imperial Journal of Interdisciplinary Research, Vol 2, Issue 3, pp: 396-397, 2016.
[10] M.A.Gopalan, S.Vidhyalakshmi, A.Kavitha, “ Observation on the Ternary Cubic Equation ”, Antartica J.Math 10(5),2013,453-460.
[11] S.Vidhyalakshmi, T.R. Usha Rani and M.A. Gopalan “Integral Solution of Non-Homogenous Ternary Cubic Equation ”, Diophantus J.Math., 2(1), 31-38, 2013.
[12] G. Janaki, P. Saranya, “On the Ternary Cubic Diophantine Equation ”, Imperial Journal of Interdisciplinary research.Vol 5, Issue 3, pp: 227-229, 2016.
[13] C. Saranya, G. Janaki, “Integral Solutions of the Ternary Cubic Equation ”, International Journal of Engineering and Techonology, Vol 4, Issue 3, March 2017.pg no.665-669.
[14] P.Saranya, G. Janaki, On the Exponential Diophantine Equation , International Research Journal of Engineering and Technology, Vol 4, Issue 11 , Nov 2017, Pg No: 1042-1044.
[15] P.Saranya, G. Janaki, Ascertainment on The Exponential Equation ,Compliance Engineering Journal, Vol 10 , Issue 8 , August 2019, Pg No:225-229.
[16] G.Janaki, P.Saranya, On the Ternary Cubic Diophantine Equation , International Journal of Science and Research-Online, Vol 5, Issue 3 , March 2016, Pg No: 227-229.
[17] P.Saranya, G. Janaki, Explication of The Transcendental Equation , Adalya Journal, Vol 8, Issue 9, September 2019, Pg No: 70-73.
[18] Saranya, P., G. Janaki, and M. Shri Padmapriya. \"Elucidation of the Transcendence Equation j+?( j3+ k3-jk)+ 3? (l2+ m2)= h3 (22n+ 1).\" (2023): Pg No: 28-36.
[19] Saranya, P., G. Janaki, and K. Poorani. \"On the Ternion Cubical Diophantine Equation 5 (m2+ n2)-6 (mn)+ 8 (m+ n)+ 16= 370p3.\" (2023): Pg No: 13-21.
[20] Saranya, P., and M. Priya. \"Transcendental Equation Involving Palindrome Number.\" Arya Bhatta Journal of Mathematics and Informatics 15, no. 1 (2023): 61-66.